Wasserstein Generative Regression
- URL: http://arxiv.org/abs/2306.15163v1
- Date: Tue, 27 Jun 2023 02:44:54 GMT
- Title: Wasserstein Generative Regression
- Authors: Shanshan Song, Tong Wang, Guohao Shen, Yuanyuan Lin, and Jian Huang
- Abstract summary: We propose a new and unified approach for nonparametric regression and conditional distribution learning.
Our approach simultaneously estimates a regression function and a conditional generator using a generative learning framework.
We provide theoretical guarantees by deriving non-asymptotic error bounds and the distributional consistency of our approach under suitable assumptions.
- Score: 6.366148239550708
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a new and unified approach for nonparametric
regression and conditional distribution learning. Our approach simultaneously
estimates a regression function and a conditional generator using a generative
learning framework, where a conditional generator is a function that can
generate samples from a conditional distribution. The main idea is to estimate
a conditional generator that satisfies the constraint that it produces a good
regression function estimator. We use deep neural networks to model the
conditional generator. Our approach can handle problems with multivariate
outcomes and covariates, and can be used to construct prediction intervals. We
provide theoretical guarantees by deriving non-asymptotic error bounds and the
distributional consistency of our approach under suitable assumptions. We also
perform numerical experiments with simulated and real data to demonstrate the
effectiveness and superiority of our approach over some existing approaches in
various scenarios.
Related papers
- A Kernel-Based Conditional Two-Sample Test Using Nearest Neighbors (with Applications to Calibration, Regression Curves, and Simulation-Based Inference) [3.622435665395788]
We introduce a kernel-based measure for detecting differences between two conditional distributions.
When the two conditional distributions are the same, the estimate has a Gaussian limit and its variance has a simple form that can be easily estimated from the data.
We also provide a resampling based test using our estimate that applies to the conditional goodness-of-fit problem.
arXiv Detail & Related papers (2024-07-23T15:04:38Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
Quantile regression is a leading approach for obtaining such intervals via the empirical estimation of quantiles in the distribution of outputs.
We propose Relaxed Quantile Regression (RQR), a direct alternative to quantile regression based interval construction that removes this arbitrary constraint.
We demonstrate that this added flexibility results in intervals with an improvement in desirable qualities.
arXiv Detail & Related papers (2024-06-05T13:36:38Z) - Time-series Generation by Contrastive Imitation [87.51882102248395]
We study a generative framework that seeks to combine the strengths of both: Motivated by a moment-matching objective to mitigate compounding error, we optimize a local (but forward-looking) transition policy.
At inference, the learned policy serves as the generator for iterative sampling, and the learned energy serves as a trajectory-level measure for evaluating sample quality.
arXiv Detail & Related papers (2023-11-02T16:45:25Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - Engression: Extrapolation through the Lens of Distributional Regression [2.519266955671697]
We propose a neural network-based distributional regression methodology called engression'
An engression model is generative in the sense that we can sample from the fitted conditional distribution and is also suitable for high-dimensional outcomes.
We show that engression can successfully perform extrapolation under some assumptions such as monotonicity, whereas traditional regression approaches such as least-squares or quantile regression fall short under the same assumptions.
arXiv Detail & Related papers (2023-07-03T08:19:00Z) - Distributional Gradient Boosting Machines [77.34726150561087]
Our framework is based on XGBoost and LightGBM.
We show that our framework achieves state-of-the-art forecast accuracy.
arXiv Detail & Related papers (2022-04-02T06:32:19Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z) - Nonparametric Conditional Density Estimation In A Deep Learning
Framework For Short-Term Forecasting [0.34410212782758043]
Many machine learning techniques give a single-point prediction of the conditional distribution of the target variable.
We propose a technique that simultaneously estimates the entire conditional distribution and flexibly allows for machine learning techniques to be incorporated.
arXiv Detail & Related papers (2020-08-17T22:31:19Z) - Double Generative Adversarial Networks for Conditional Independence
Testing [8.359770027722275]
High-dimensional conditional independence testing is a key building block in statistics and machine learning.
We propose an inferential procedure based on double generative adversarial networks (GANs)
arXiv Detail & Related papers (2020-06-03T16:14:15Z) - Robust Gaussian Process Regression with a Bias Model [0.6850683267295248]
Most existing approaches replace an outlier-prone Gaussian likelihood with a non-Gaussian likelihood induced from a heavy tail distribution.
The proposed approach models an outlier as a noisy and biased observation of an unknown regression function.
Conditioned on the bias estimates, the robust GP regression can be reduced to a standard GP regression problem.
arXiv Detail & Related papers (2020-01-14T06:21:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.