On-device modeling of user's social context and familiar places from
smartphone-embedded sensor data
- URL: http://arxiv.org/abs/2306.15437v1
- Date: Tue, 27 Jun 2023 12:53:14 GMT
- Title: On-device modeling of user's social context and familiar places from
smartphone-embedded sensor data
- Authors: Mattia Giovanni Campana, Franca Delmastro
- Abstract summary: This paper proposes an unsupervised and lightweight approach to model the user's social context and locations directly on the mobile device.
For the social context, the approach utilizes data on physical and cyber social interactions among users and their devices.
The effectiveness of the proposed approach is demonstrated through three sets of experiments, employing five real-world datasets.
- Score: 7.310043452300736
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Context modeling and recognition are crucial for adaptive mobile and
ubiquitous computing. Context-awareness in mobile environments relies on prompt
reactions to context changes. However, current solutions focus on limited
context information processed on centralized architectures, risking privacy
leakage and lacking personalization. On-device context modeling and recognition
are emerging research trends, addressing these concerns. Social interactions
and visited locations play significant roles in characterizing daily life
scenarios. This paper proposes an unsupervised and lightweight approach to
model the user's social context and locations directly on the mobile device.
Leveraging the ego-network model, the system extracts high-level, semantic-rich
context features from smartphone-embedded sensor data. For the social context,
the approach utilizes data on physical and cyber social interactions among
users and their devices. Regarding location, it prioritizes modeling the
familiarity degree of specific locations over raw location data, such as GPS
coordinates and proximity devices. The effectiveness of the proposed approach
is demonstrated through three sets of experiments, employing five real-world
datasets. These experiments evaluate the structure of social and location ego
networks, provide a semantic evaluation of the proposed models, and assess
mobile computing performance. Finally, the relevance of the extracted features
is showcased by the improved performance of three machine learning models in
recognizing daily-life situations. Compared to using only features related to
physical context, the proposed approach achieves a 3% improvement in AUROC, 9%
in Precision, and 5% in Recall.
Related papers
- Learning Where to Look: Self-supervised Viewpoint Selection for Active Localization using Geometrical Information [68.10033984296247]
This paper explores the domain of active localization, emphasizing the importance of viewpoint selection to enhance localization accuracy.
Our contributions involve using a data-driven approach with a simple architecture designed for real-time operation, a self-supervised data training method, and the capability to consistently integrate our map into a planning framework tailored for real-world robotics applications.
arXiv Detail & Related papers (2024-07-22T12:32:09Z) - Lightweight Modeling of User Context Combining Physical and Virtual
Sensor Data [15.800978541993706]
We present a framework to collect datasets containing heterogeneous sensing data from personal mobile devices.
We propose a lightweight approach to model the user context able to efficiently perform the entire reasoning process.
We achieve a 10x speed up and a feature reduction of more than 90% while keeping the accuracy loss less than 3%.
arXiv Detail & Related papers (2023-06-28T08:57:01Z) - MyDigitalFootprint: an extensive context dataset for pervasive computing
applications at the edge [7.310043452300736]
MyDigitalFootprint is a large-scale dataset comprising smartphone sensor data, physical proximity information, and Online Social Networks interactions.
It spans two months of measurements from 31 volunteer users in their natural environment, allowing for unrestricted behavior.
To demonstrate the dataset's effectiveness, we present three context-aware applications utilizing various machine learning tasks.
arXiv Detail & Related papers (2023-06-28T07:59:47Z) - Exploring Contextual Representation and Multi-Modality for End-to-End
Autonomous Driving [58.879758550901364]
Recent perception systems enhance spatial understanding with sensor fusion but often lack full environmental context.
We introduce a framework that integrates three cameras to emulate the human field of view, coupled with top-down bird-eye-view semantic data to enhance contextual representation.
Our method achieves displacement error by 0.67m in open-loop settings, surpassing current methods by 6.9% on the nuScenes dataset.
arXiv Detail & Related papers (2022-10-13T05:56:20Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
We present an Adaptive Local-Component-aware Graph Convolutional Network for skeleton-based action recognition.
Our method provides a stronger representation than the global embedding and helps our model reach state-of-the-art.
arXiv Detail & Related papers (2022-09-21T02:33:07Z) - On-device modeling of user's social context and familiar places from
smartphone-embedded sensor data [7.310043452300736]
We propose a novel, unsupervised and lightweight approach to model the user's social context and her locations.
We exploit data related to both physical and cyber social interactions among users and their devices.
We show the performance of 3 machine learning algorithms to recognize daily-life situations.
arXiv Detail & Related papers (2022-05-18T08:32:26Z) - Masked Transformer for Neighhourhood-aware Click-Through Rate Prediction [74.52904110197004]
We propose Neighbor-Interaction based CTR prediction, which put this task into a Heterogeneous Information Network (HIN) setting.
In order to enhance the representation of the local neighbourhood, we consider four types of topological interaction among the nodes.
We conduct comprehensive experiments on two real world datasets and the experimental results show that our proposed method outperforms state-of-the-art CTR models significantly.
arXiv Detail & Related papers (2022-01-25T12:44:23Z) - DAPPER: Label-Free Performance Estimation after Personalization for
Heterogeneous Mobile Sensing [95.18236298557721]
We present DAPPER (Domain AdaPtation Performance EstimatoR) that estimates the adaptation performance in a target domain with unlabeled target data.
Our evaluation with four real-world sensing datasets compared against six baselines shows that DAPPER outperforms the state-of-the-art baseline by 39.8% in estimation accuracy.
arXiv Detail & Related papers (2021-11-22T08:49:33Z) - SensiX: A Platform for Collaborative Machine Learning on the Edge [69.1412199244903]
We present SensiX, a personal edge platform that stays between sensor data and sensing models.
We demonstrate its efficacy in developing motion and audio-based multi-device sensing systems.
Our evaluation shows that SensiX offers a 7-13% increase in overall accuracy and up to 30% increase across different environment dynamics at the expense of 3mW power overhead.
arXiv Detail & Related papers (2020-12-04T23:06:56Z) - Multi-Modal Subjective Context Modelling and Recognition [19.80579219657159]
We present a novel ontological context model that captures five dimensions, namely time, location, activity, social relations and object.
An initial context recognition experiment on real-world data hints at the promise of our model.
arXiv Detail & Related papers (2020-11-19T05:42:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.