Using Large Language Models to Provide Explanatory Feedback to Human
Tutors
- URL: http://arxiv.org/abs/2306.15498v1
- Date: Tue, 27 Jun 2023 14:19:12 GMT
- Title: Using Large Language Models to Provide Explanatory Feedback to Human
Tutors
- Authors: Jionghao Lin, Danielle R. Thomas, Feifei Han, Shivang Gupta, Wei Tan,
Ngoc Dang Nguyen, Kenneth R. Koedinger
- Abstract summary: We present two approaches for supplying tutors real-time feedback within an online lesson on how to give students effective praise.
This work-in-progress demonstrates considerable accuracy in binary classification for corrective feedback of effective, or effort-based.
More notably, we introduce progress towards an enhanced approach of providing explanatory feedback using large language model-facilitated named entity recognition.
- Score: 3.2507682694499582
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Research demonstrates learners engaging in the process of producing
explanations to support their reasoning, can have a positive impact on
learning. However, providing learners real-time explanatory feedback often
presents challenges related to classification accuracy, particularly in
domain-specific environments, containing situationally complex and nuanced
responses. We present two approaches for supplying tutors real-time feedback
within an online lesson on how to give students effective praise. This
work-in-progress demonstrates considerable accuracy in binary classification
for corrective feedback of effective, or effort-based (F1 score = 0.811), and
ineffective, or outcome-based (F1 score = 0.350), praise responses. More
notably, we introduce progress towards an enhanced approach of providing
explanatory feedback using large language model-facilitated named entity
recognition, which can provide tutors feedback, not only while engaging in
lessons, but can potentially suggest real-time tutor moves. Future work
involves leveraging large language models for data augmentation to improve
accuracy, while also developing an explanatory feedback interface.
Related papers
- Navigating Noisy Feedback: Enhancing Reinforcement Learning with Error-Prone Language Models [8.025808955214957]
This paper studies the advantages and limitations of reinforcement learning from large language model feedback.
We propose a simple yet effective method for soliciting and applying feedback as a potential-based shaping function.
arXiv Detail & Related papers (2024-10-22T19:52:08Z) - Closing the Loop: Learning to Generate Writing Feedback via Language Model Simulated Student Revisions [6.216542656489173]
We propose PROF that PROduces Feedback via learning from LM simulated student revisions.
We empirically test the efficacy of PROF and observe that our approach surpasses a variety of baseline methods in effectiveness of improving students' writing.
arXiv Detail & Related papers (2024-10-10T15:52:48Z) - How Can I Improve? Using GPT to Highlight the Desired and Undesired Parts of Open-ended Responses [11.809647985607935]
We explore a sequence labeling approach focused on identifying components of desired and less desired praise for providing explanatory feedback.
To quantify the quality of highlighted praise components identified by GPT models, we introduced a Modified Intersection over Union (M-IoU) score.
Our findings demonstrate that: (1) the M-IoU score effectively correlates with human judgment in evaluating sequence quality; (2) using two-shot prompting on GPT-3.5 resulted in decent performance in recognizing effort-based and outcome-based praise; and (3) our optimally fine-tuned GPT-3.5 model achieved M-IoU scores of 0.6
arXiv Detail & Related papers (2024-05-01T02:59:10Z) - Automated Assessment of Encouragement and Warmth in Classrooms Leveraging Multimodal Emotional Features and ChatGPT [7.273857543125784]
Our work explores a multimodal approach to automatically estimating encouragement and warmth in classrooms.
We employed facial and speech emotion recognition with sentiment analysis to extract interpretable features from video, audio, and transcript data.
We demonstrated our approach on the GTI dataset, comprising 367 16-minute video segments from 92 authentic lesson recordings.
arXiv Detail & Related papers (2024-04-01T16:58:09Z) - Improving the Validity of Automatically Generated Feedback via
Reinforcement Learning [50.067342343957876]
We propose a framework for feedback generation that optimize both correctness and alignment using reinforcement learning (RL)
Specifically, we use GPT-4's annotations to create preferences over feedback pairs in an augmented dataset for training via direct preference optimization (DPO)
arXiv Detail & Related papers (2024-03-02T20:25:50Z) - Training Language Models with Language Feedback at Scale [50.70091340506957]
We introduce learning from Language Feedback (ILF), a new approach that utilizes more informative language feedback.
ILF consists of three steps that are applied iteratively: first, conditioning the language model on the input, an initial LM output, and feedback to generate refinements.
We show theoretically that ILF can be viewed as Bayesian Inference, similar to Reinforcement Learning from human feedback.
arXiv Detail & Related papers (2023-03-28T17:04:15Z) - Fairness-guided Few-shot Prompting for Large Language Models [93.05624064699965]
In-context learning can suffer from high instability due to variations in training examples, example order, and prompt formats.
We introduce a metric to evaluate the predictive bias of a fixed prompt against labels or a given attributes.
We propose a novel search strategy based on the greedy search to identify the near-optimal prompt for improving the performance of in-context learning.
arXiv Detail & Related papers (2023-03-23T12:28:25Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
We conduct a crowdsourcing study, where participants interact with deception detection models that have been trained to distinguish between genuine and fake hotel reviews.
We observe that for a linear bag-of-words model, participants with access to the feature coefficients during training are able to cause a larger reduction in model confidence in the testing phase when compared to the no-explanation control.
arXiv Detail & Related papers (2021-12-17T18:29:56Z) - PEBBLE: Feedback-Efficient Interactive Reinforcement Learning via
Relabeling Experience and Unsupervised Pre-training [94.87393610927812]
We present an off-policy, interactive reinforcement learning algorithm that capitalizes on the strengths of both feedback and off-policy learning.
We demonstrate that our approach is capable of learning tasks of higher complexity than previously considered by human-in-the-loop methods.
arXiv Detail & Related papers (2021-06-09T14:10:50Z) - Facial Feedback for Reinforcement Learning: A Case Study and Offline
Analysis Using the TAMER Framework [51.237191651923666]
We investigate the potential of agent learning from trainers' facial expressions via interpreting them as evaluative feedback.
With designed CNN-RNN model, our analysis shows that telling trainers to use facial expressions and competition can improve the accuracies for estimating positive and negative feedback.
Our results with a simulation experiment show that learning solely from predicted feedback based on facial expressions is possible.
arXiv Detail & Related papers (2020-01-23T17:50:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.