Capturing the Diffusive Behavior of the Multiscale Linear Transport
Equations by Asymptotic-Preserving Convolutional DeepONets
- URL: http://arxiv.org/abs/2306.15891v3
- Date: Thu, 28 Sep 2023 07:30:50 GMT
- Title: Capturing the Diffusive Behavior of the Multiscale Linear Transport
Equations by Asymptotic-Preserving Convolutional DeepONets
- Authors: Keke Wu and Xiong-bin Yan and Shi Jin and Zheng Ma
- Abstract summary: We introduce two types of novel Asymptotic-Preserving Convolutional Deep Operator Networks (APCONs)
We propose a new architecture called Convolutional Deep Operator Networks, which employ multiple local convolution operations instead of a global heat kernel.
Our APCON methods possess a parameter count that is independent of the grid size and are capable of capturing the diffusive behavior of the linear transport problem.
- Score: 31.88833218777623
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce two types of novel Asymptotic-Preserving
Convolutional Deep Operator Networks (APCONs) designed to address the
multiscale time-dependent linear transport problem. We observe that the vanilla
physics-informed DeepONets with modified MLP may exhibit instability in
maintaining the desired limiting macroscopic behavior. Therefore, this
necessitates the utilization of an asymptotic-preserving loss function. Drawing
inspiration from the heat kernel in the diffusion equation, we propose a new
architecture called Convolutional Deep Operator Networks, which employ multiple
local convolution operations instead of a global heat kernel, along with
pooling and activation operations in each filter layer. Our APCON methods
possess a parameter count that is independent of the grid size and are capable
of capturing the diffusive behavior of the linear transport problem. Finally,
we validate the effectiveness of our methods through several numerical
examples.
Related papers
- LipKernel: Lipschitz-Bounded Convolutional Neural Networks via Dissipative Layers [0.0468732641979009]
We propose a layer-wise parameterization for convolutional neural networks (CNNs) that includes built-in robustness guarantees.
Our method Lip Kernel directly parameterizes dissipative convolution kernels using a 2-D Roesser-type state space model.
We show that the run-time using our method is orders of magnitude faster than state-of-the-art Lipschitz-bounded networks.
arXiv Detail & Related papers (2024-10-29T17:20:14Z) - Macroscopic auxiliary asymptotic preserving neural networks for the
linear radiative transfer equations [3.585855304503951]
We develop a Macroscopic Auxiliary Asymptotic-Preserving Neural Network (MA-APNN) method to solve the time-dependent linear radiative transfer equations.
We present several numerical examples to demonstrate the effectiveness of MA-APNNs.
arXiv Detail & Related papers (2024-03-04T08:10:42Z) - Multi-Grid Tensorized Fourier Neural Operator for High-Resolution PDEs [93.82811501035569]
We introduce a new data efficient and highly parallelizable operator learning approach with reduced memory requirement and better generalization.
MG-TFNO scales to large resolutions by leveraging local and global structures of full-scale, real-world phenomena.
We demonstrate superior performance on the turbulent Navier-Stokes equations where we achieve less than half the error with over 150x compression.
arXiv Detail & Related papers (2023-09-29T20:18:52Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory [79.50644650795012]
We propose a deep learning approach to solve Kohn-Sham Density Functional Theory (KS-DFT)
We prove that such an approach has the same expressivity as the SCF method, yet reduces the computational complexity.
In addition, we show that our approach enables us to explore more complex neural-based wave functions.
arXiv Detail & Related papers (2023-03-01T10:38:10Z) - Lipschitz constant estimation for 1D convolutional neural networks [0.0]
We propose a dissipativity-based method for Lipschitz constant estimation of 1D convolutional neural networks (CNNs)
In particular, we analyze the dissipativity properties of convolutional, pooling, and fully connected layers.
arXiv Detail & Related papers (2022-11-28T12:09:06Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
We present a method called Manifold Interpolating Optimal-Transport Flow (MIOFlow)
MIOFlow learns, continuous population dynamics from static snapshot samples taken at sporadic timepoints.
We evaluate our method on simulated data with bifurcations and merges, as well as scRNA-seq data from embryoid body differentiation, and acute myeloid leukemia treatment.
arXiv Detail & Related papers (2022-06-29T22:19:03Z) - Deep Learning Approximation of Diffeomorphisms via Linear-Control
Systems [91.3755431537592]
We consider a control system of the form $dot x = sum_i=1lF_i(x)u_i$, with linear dependence in the controls.
We use the corresponding flow to approximate the action of a diffeomorphism on a compact ensemble of points.
arXiv Detail & Related papers (2021-10-24T08:57:46Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Deep neural networks for inverse problems with pseudodifferential
operators: an application to limited-angle tomography [0.4110409960377149]
We propose a novel convolutional neural network (CNN) designed for learning pseudodifferential operators ($Psi$DOs) in the context of linear inverse problems.
We show that, under rather general assumptions on the forward operator, the unfolded iterations of ISTA can be interpreted as the successive layers of a CNN.
In particular, we prove that, in the case of LA-CT, the operations of upscaling, downscaling and convolution, can be exactly determined by combining the convolutional nature of the limited angle X-ray transform and basic properties defining a wavelet system.
arXiv Detail & Related papers (2020-06-02T14:03:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.