Obeying the Order: Introducing Ordered Transfer Hyperparameter
Optimisation
- URL: http://arxiv.org/abs/2306.16916v1
- Date: Thu, 29 Jun 2023 13:08:36 GMT
- Title: Obeying the Order: Introducing Ordered Transfer Hyperparameter
Optimisation
- Authors: Sigrid Passano Hellan, Huibin Shen, Fran\c{c}ois-Xavier Aubet, David
Salinas and Aaron Klein
- Abstract summary: OTHPO is a version of transfer learning where the tasks follow a sequential order.
We empirically show the importance of taking order into account using ten benchmarks.
We open source the benchmarks to foster future research on ordered transfer HPO.
- Score: 10.761476482982077
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce ordered transfer hyperparameter optimisation (OTHPO), a version
of transfer learning for hyperparameter optimisation (HPO) where the tasks
follow a sequential order. Unlike for state-of-the-art transfer HPO, the
assumption is that each task is most correlated to those immediately before it.
This matches many deployed settings, where hyperparameters are retuned as more
data is collected; for instance tuning a sequence of movie recommendation
systems as more movies and ratings are added. We propose a formal definition,
outline the differences to related problems and propose a basic OTHPO method
that outperforms state-of-the-art transfer HPO. We empirically show the
importance of taking order into account using ten benchmarks. The benchmarks
are in the setting of gradually accumulating data, and span XGBoost, random
forest, approximate k-nearest neighbor, elastic net, support vector machines
and a separate real-world motivated optimisation problem. We open source the
benchmarks to foster future research on ordered transfer HPO.
Related papers
- Adaptive Preference Scaling for Reinforcement Learning with Human Feedback [103.36048042664768]
Reinforcement learning from human feedback (RLHF) is a prevalent approach to align AI systems with human values.
We propose a novel adaptive preference loss, underpinned by distributionally robust optimization (DRO)
Our method is versatile and can be readily adapted to various preference optimization frameworks.
arXiv Detail & Related papers (2024-06-04T20:33:22Z) - Deep Ranking Ensembles for Hyperparameter Optimization [9.453554184019108]
We present a novel method that meta-learns neural network surrogates optimized for ranking the configurations' performances while modeling their uncertainty via ensembling.
In a large-scale experimental protocol comprising 12 baselines, 16 HPO search spaces and 86 datasets/tasks, we demonstrate that our method achieves new state-of-the-art results in HPO.
arXiv Detail & Related papers (2023-03-27T13:52:40Z) - FedHPO-B: A Benchmark Suite for Federated Hyperparameter Optimization [50.12374973760274]
We propose and implement a benchmark suite FedHPO-B that incorporates comprehensive FL tasks, enables efficient function evaluations, and eases continuing extensions.
We also conduct extensive experiments based on FedHPO-B to benchmark a few HPO methods.
arXiv Detail & Related papers (2022-06-08T15:29:10Z) - Towards Learning Universal Hyperparameter Optimizers with Transformers [57.35920571605559]
We introduce the OptFormer, the first text-based Transformer HPO framework that provides a universal end-to-end interface for jointly learning policy and function prediction.
Our experiments demonstrate that the OptFormer can imitate at least 7 different HPO algorithms, which can be further improved via its function uncertainty estimates.
arXiv Detail & Related papers (2022-05-26T12:51:32Z) - AUTOMATA: Gradient Based Data Subset Selection for Compute-Efficient
Hyper-parameter Tuning [72.54359545547904]
We propose a gradient-based subset selection framework for hyper- parameter tuning.
We show that using gradient-based data subsets for hyper- parameter tuning achieves significantly faster turnaround times and speedups of 3$times$-30$times$.
arXiv Detail & Related papers (2022-03-15T19:25:01Z) - DHA: End-to-End Joint Optimization of Data Augmentation Policy,
Hyper-parameter and Architecture [81.82173855071312]
We propose an end-to-end solution that integrates the AutoML components and returns a ready-to-use model at the end of the search.
Dha achieves state-of-the-art (SOTA) results on various datasets, especially 77.4% accuracy on ImageNet with cell based search space.
arXiv Detail & Related papers (2021-09-13T08:12:50Z) - Hyperparameter Optimization: Foundations, Algorithms, Best Practices and
Open Challenges [5.139260825952818]
This paper reviews important HPO methods such as grid or random search, evolutionary algorithms, Bayesian optimization, Hyperband and racing.
It gives practical recommendations regarding important choices to be made when conducting HPO, including the HPO algorithms themselves, performance evaluation, how to combine HPO with ML pipelines, runtime improvements, and parallelization.
arXiv Detail & Related papers (2021-07-13T04:55:47Z) - Few-Shot Bayesian Optimization with Deep Kernel Surrogates [7.208515071018781]
We propose a few-shot learning problem in which we train a shared deep surrogate model to adapt to the response function of a new task.
We propose the use of a deep kernel network for a Gaussian process surrogate that is meta-learned in an end-to-end fashion.
As a result, the novel few-shot optimization of our deep kernel surrogate leads to new state-of-the-art results at HPO.
arXiv Detail & Related papers (2021-01-19T15:00:39Z) - Practical and sample efficient zero-shot HPO [8.41866793161234]
We provide an overview of available approaches and introduce two novel techniques to handle the problem.
The first is based on a surrogate model and adaptively chooses pairs of dataset, configuration to query.
The second is for settings where finding, tuning and testing a surrogate model is problematic, is a multi-fidelity technique combining HyperBand with submodular optimization.
arXiv Detail & Related papers (2020-07-27T08:56:55Z) - HyperSTAR: Task-Aware Hyperparameters for Deep Networks [52.50861379908611]
HyperSTAR is a task-aware method to warm-start HPO for deep neural networks.
It learns a dataset (task) representation along with the performance predictor directly from raw images.
It evaluates 50% less configurations to achieve the best performance compared to existing methods.
arXiv Detail & Related papers (2020-05-21T08:56:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.