Large-scale Bayesian Structure Learning for Gaussian Graphical Models using Marginal Pseudo-likelihood
- URL: http://arxiv.org/abs/2307.00127v3
- Date: Fri, 19 Jul 2024 21:24:01 GMT
- Title: Large-scale Bayesian Structure Learning for Gaussian Graphical Models using Marginal Pseudo-likelihood
- Authors: Reza Mohammadi, Marit Schoonhoven, Lucas Vogels, S. Ilker Birbil,
- Abstract summary: We introduce two novel Markov chain Monte Carlo (MCMC) search algorithms with a significantly lower computational cost than leading Bayesian approaches.
These algorithms can deliver reliable results in mere minutes on standard computers, even for large-scale problems with one thousand variables.
We also illustrate the practical utility of our methods on medium and large-scale applications from human and mice gene expression studies.
- Score: 0.26249027950824516
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bayesian methods for learning Gaussian graphical models offer a comprehensive framework that addresses model uncertainty and incorporates prior knowledge. Despite their theoretical strengths, the applicability of Bayesian methods is often constrained by computational demands, especially in modern contexts involving thousands of variables. To overcome this issue, we introduce two novel Markov chain Monte Carlo (MCMC) search algorithms with a significantly lower computational cost than leading Bayesian approaches. Our proposed MCMC-based search algorithms use the marginal pseudo-likelihood approach to bypass the complexities of computing intractable normalizing constants and iterative precision matrix sampling. These algorithms can deliver reliable results in mere minutes on standard computers, even for large-scale problems with one thousand variables. Furthermore, our proposed method efficiently addresses model uncertainty by exploring the full posterior graph space. We establish the consistency of graph recovery, and our extensive simulation study indicates that the proposed algorithms, particularly for large-scale sparse graphs, outperform leading Bayesian approaches in terms of computational efficiency and accuracy. We also illustrate the practical utility of our methods on medium and large-scale applications from human and mice gene expression studies. The implementation supporting the new approach is available through the R package BDgraph.
Related papers
- Learning the hub graphical Lasso model with the structured sparsity via
an efficient algorithm [1.0923877073891446]
We introduce a two-phase algorithm to estimate hub graphical models.
The proposed algorithm first generates a good initial point via a dual alternating direction method of multipliers.
It then warms a semismooth Newton (SSN) based augmented Lagrangian method (ALM) to compute a solution that is accurate enough for practical tasks.
arXiv Detail & Related papers (2023-08-17T08:24:28Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Fast Doubly-Adaptive MCMC to Estimate the Gibbs Partition Function with
Weak Mixing Time Bounds [7.428782604099876]
A major obstacle to practical applications of Gibbs distributions is the need to estimate their partition functions.
We present a novel method for reducing the computational complexity of rigorously estimating the partition functions.
arXiv Detail & Related papers (2021-11-14T15:42:02Z) - Gaussian Graphical Model Selection for Huge Data via Minipatch Learning [1.2891210250935146]
We propose the Minipatch Graph (MPGraph) estimator to solve the problem of graphical model selection.
MPGraph is a generalization of thresholded graph estimators fit to tiny, random subsets of both the observations and the nodes.
We prove that our algorithm achieves finite-sample graph selection consistency.
arXiv Detail & Related papers (2021-10-22T21:06:48Z) - Dual Optimization for Kolmogorov Model Learning Using Enhanced Gradient
Descent [8.714458129632158]
Kolmogorov model (KM) is an interpretable and predictable representation approach to learning the underlying probabilistic structure of a set of random variables.
We propose a computationally scalable KM learning algorithm, based on the regularized dual optimization combined with enhanced gradient descent (GD) method.
It is shown that the accuracy of logical relation mining for interpretability by using the proposed KM learning algorithm exceeds $80%$.
arXiv Detail & Related papers (2021-07-11T10:33:02Z) - Bayesian graph convolutional neural networks via tempered MCMC [0.41998444721319217]
Deep learning models, such as convolutional neural networks, have long been applied to image and multi-media tasks.
More recently, there has been more attention to unstructured data that can be represented via graphs.
These types of data are often found in health and medicine, social networks, and research data repositories.
arXiv Detail & Related papers (2021-04-17T04:03:25Z) - Efficient semidefinite-programming-based inference for binary and
multi-class MRFs [83.09715052229782]
We propose an efficient method for computing the partition function or MAP estimate in a pairwise MRF.
We extend semidefinite relaxations from the typical binary MRF to the full multi-class setting, and develop a compact semidefinite relaxation that can again be solved efficiently using the solver.
arXiv Detail & Related papers (2020-12-04T15:36:29Z) - Active Model Estimation in Markov Decision Processes [108.46146218973189]
We study the problem of efficient exploration in order to learn an accurate model of an environment, modeled as a Markov decision process (MDP)
We show that our Markov-based algorithm outperforms both our original algorithm and the maximum entropy algorithm in the small sample regime.
arXiv Detail & Related papers (2020-03-06T16:17:24Z) - Learning Gaussian Graphical Models via Multiplicative Weights [54.252053139374205]
We adapt an algorithm of Klivans and Meka based on the method of multiplicative weight updates.
The algorithm enjoys a sample complexity bound that is qualitatively similar to others in the literature.
It has a low runtime $O(mp2)$ in the case of $m$ samples and $p$ nodes, and can trivially be implemented in an online manner.
arXiv Detail & Related papers (2020-02-20T10:50:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.