iMETRE: Incorporating Markers of Entity Types for Relation Extraction
- URL: http://arxiv.org/abs/2307.00132v1
- Date: Fri, 30 Jun 2023 20:54:41 GMT
- Title: iMETRE: Incorporating Markers of Entity Types for Relation Extraction
- Authors: N Harsha Vardhan, Manav Chaudhary
- Abstract summary: Sentence-level relation extraction aims to identify the relationship between 2 entities given a contextual sentence.
In this paper, we approach the task of relationship extraction in the financial dataset REFinD.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sentence-level relation extraction (RE) aims to identify the relationship
between 2 entities given a contextual sentence. While there have been many
attempts to solve this problem, the current solutions have a lot of room to
improve. In this paper, we approach the task of relationship extraction in the
financial dataset REFinD. Our approach incorporates typed entity markers
representations and various models finetuned on the dataset, which has allowed
us to achieve an F1 score of 69.65% on the validation set. Through this paper,
we discuss various approaches and possible limitations.
Related papers
- Few-Shot Joint Multimodal Entity-Relation Extraction via Knowledge-Enhanced Cross-modal Prompt Model [16.03304915788997]
Joint Multimodal Entity-Relation Extraction (JMERE) is a challenging task that aims to extract entities and their relations from text-image pairs in social media posts.
Existing methods for JMERE require large amounts of labeled data.
We introduce the textbfKnowledge-textbfEnhanced textbfCross-modal textbfPrompt textbfModel.
arXiv Detail & Related papers (2024-10-18T07:14:54Z) - Generative Retrieval Meets Multi-Graded Relevance [104.75244721442756]
We introduce a framework called GRaded Generative Retrieval (GR$2$)
GR$2$ focuses on two key components: ensuring relevant and distinct identifiers, and implementing multi-graded constrained contrastive training.
Experiments on datasets with both multi-graded and binary relevance demonstrate the effectiveness of GR$2$.
arXiv Detail & Related papers (2024-09-27T02:55:53Z) - Multimodal Relational Triple Extraction with Query-based Entity Object Transformer [20.97497765985682]
Multimodal Relation Extraction is crucial for constructing flexible and realistic knowledge.
We propose Multimodal Entity-Object Triple Extraction, which aims to extract all triples (entity, relation, object region) from image-text pairs.
We also propose QEOT, a query-based model with a selective attention mechanism to dynamically explore the interaction and fusion of textual and visual information.
arXiv Detail & Related papers (2024-08-16T12:43:38Z) - Coherent Entity Disambiguation via Modeling Topic and Categorical
Dependency [87.16283281290053]
Previous entity disambiguation (ED) methods adopt a discriminative paradigm, where prediction is made based on matching scores between mention context and candidate entities.
We propose CoherentED, an ED system equipped with novel designs aimed at enhancing the coherence of entity predictions.
We achieve new state-of-the-art results on popular ED benchmarks, with an average improvement of 1.3 F1 points.
arXiv Detail & Related papers (2023-11-06T16:40:13Z) - Multi-Grained Multimodal Interaction Network for Entity Linking [65.30260033700338]
Multimodal entity linking task aims at resolving ambiguous mentions to a multimodal knowledge graph.
We propose a novel Multi-GraIned Multimodal InteraCtion Network $textbf(MIMIC)$ framework for solving the MEL task.
arXiv Detail & Related papers (2023-07-19T02:11:19Z) - Dual-Gated Fusion with Prefix-Tuning for Multi-Modal Relation Extraction [13.454953507205278]
Multi-Modal Relation Extraction aims at identifying the relation between two entities in texts that contain visual clues.
We propose a novel MMRE framework to better capture the deeper correlations of text, entity pair, and image/objects.
Our approach achieves excellent performance compared to strong competitors, even in the few-shot situation.
arXiv Detail & Related papers (2023-06-19T15:31:34Z) - REFinD: Relation Extraction Financial Dataset [7.207699035400335]
We propose REFinD, the first large-scale annotated dataset of relations, with $sim$29K instances and 22 relations amongst 8 types of entity pairs, generated entirely over financial documents.
We observed that various state-of-the-art deep learning models struggle with numeric inference, relational and directional ambiguity.
arXiv Detail & Related papers (2023-05-22T22:40:11Z) - Enriching Relation Extraction with OpenIE [70.52564277675056]
Relation extraction (RE) is a sub-discipline of information extraction (IE)
In this work, we explore how recent approaches for open information extraction (OpenIE) may help to improve the task of RE.
Our experiments over two annotated corpora, KnowledgeNet and FewRel, demonstrate the improved accuracy of our enriched models.
arXiv Detail & Related papers (2022-12-19T11:26:23Z) - ReSel: N-ary Relation Extraction from Scientific Text and Tables by
Learning to Retrieve and Select [53.071352033539526]
We study the problem of extracting N-ary relations from scientific articles.
Our proposed method ReSel decomposes this task into a two-stage procedure.
Our experiments on three scientific information extraction datasets show that ReSel outperforms state-of-the-art baselines significantly.
arXiv Detail & Related papers (2022-10-26T02:28:02Z) - D-REX: Dialogue Relation Extraction with Explanations [65.3862263565638]
This work focuses on extracting explanations that indicate that a relation exists while using only partially labeled data.
We propose our model-agnostic framework, D-REX, a policy-guided semi-supervised algorithm that explains and ranks relations.
We find that about 90% of the time, human annotators prefer D-REX's explanations over a strong BERT-based joint relation extraction and explanation model.
arXiv Detail & Related papers (2021-09-10T22:30:48Z) - Reasoning with Latent Structure Refinement for Document-Level Relation
Extraction [20.308845516900426]
We propose a novel model that empowers the relational reasoning across sentences by automatically inducing the latent document-level graph.
Specifically, our model achieves an F1 score of 59.05 on a large-scale document-level dataset (DocRED)
arXiv Detail & Related papers (2020-05-13T13:36:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.