Re-Think and Re-Design Graph Neural Networks in Spaces of Continuous
Graph Diffusion Functionals
- URL: http://arxiv.org/abs/2307.00222v1
- Date: Sat, 1 Jul 2023 04:44:43 GMT
- Title: Re-Think and Re-Design Graph Neural Networks in Spaces of Continuous
Graph Diffusion Functionals
- Authors: Tingting Dan and Jiaqi Ding and Ziquan Wei and Shahar Z Kovalsky and
Minjeong Kim and Won Hwa Kim and Guorong Wu
- Abstract summary: Graph neural networks (GNNs) are widely used in domains like social networks and biological systems.
locality assumption of GNNs hampers their ability to capture long-range dependencies and global patterns in graphs.
We propose a new inductive bias based on variational analysis, drawing inspiration from the Brachchronistoe problem.
- Score: 7.6435511285856865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) are widely used in domains like social networks
and biological systems. However, the locality assumption of GNNs, which limits
information exchange to neighboring nodes, hampers their ability to capture
long-range dependencies and global patterns in graphs. To address this, we
propose a new inductive bias based on variational analysis, drawing inspiration
from the Brachistochrone problem. Our framework establishes a mapping between
discrete GNN models and continuous diffusion functionals. This enables the
design of application-specific objective functions in the continuous domain and
the construction of discrete deep models with mathematical guarantees. To
tackle over-smoothing in GNNs, we analyze the existing layer-by-layer graph
embedding models and identify that they are equivalent to l2-norm integral
functionals of graph gradients, which cause over-smoothing. Similar to
edge-preserving filters in image denoising, we introduce total variation (TV)
to align the graph diffusion pattern with global community topologies.
Additionally, we devise a selective mechanism to address the trade-off between
model depth and over-smoothing, which can be easily integrated into existing
GNNs. Furthermore, we propose a novel generative adversarial network (GAN) that
predicts spreading flows in graphs through a neural transport equation. To
mitigate vanishing flows, we customize the objective function to minimize
transportation within each community while maximizing inter-community flows.
Our GNN models achieve state-of-the-art (SOTA) performance on popular graph
learning benchmarks such as Cora, Citeseer, and Pubmed.
Related papers
- Tackling Oversmoothing in GNN via Graph Sparsification: A Truss-based Approach [1.4854797901022863]
We propose a novel and flexible truss-based graph sparsification model that prunes edges from dense regions of the graph.
We then utilize our sparsification model in the state-of-the-art baseline GNNs and pooling models, such as GIN, SAGPool, GMT, DiffPool, MinCutPool, HGP-SL, DMonPool, and AdamGNN.
arXiv Detail & Related papers (2024-07-16T17:21:36Z) - Continuous Spiking Graph Neural Networks [43.28609498855841]
Continuous graph neural networks (CGNNs) have garnered significant attention due to their ability to generalize existing discrete graph neural networks (GNNs)
We introduce the high-order structure of COS-GNN, which utilizes the second-order ODE for spiking representation and continuous propagation.
We provide the theoretical proof that COS-GNN effectively mitigates the issues of exploding and vanishing gradients, enabling us to capture long-range dependencies between nodes.
arXiv Detail & Related papers (2024-04-02T12:36:40Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
We propose an end-to-end model named MentorGNN that aims to supervise the pre-training process of GNNs across graphs.
We shed new light on the problem of domain adaption on relational data (i.e., graphs) by deriving a natural and interpretable upper bound on the generalization error of the pre-trained GNNs.
arXiv Detail & Related papers (2022-08-21T15:12:08Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
Graph neural networks (GNNs) rely on the message passing paradigm to propagate node features and build interactions.
Recent works point out that different graph learning tasks require different ranges of interactions between nodes.
We study two common graph construction methods in scientific domains, i.e., emphK-nearest neighbor (KNN) graphs and emphfully-connected (FC) graphs.
arXiv Detail & Related papers (2022-05-15T11:38:14Z) - Overcoming Oversmoothness in Graph Convolutional Networks via Hybrid
Scattering Networks [11.857894213975644]
We propose a hybrid graph neural network (GNN) framework that combines traditional GCN filters with band-pass filters defined via the geometric scattering transform.
Our theoretical results establish the complementary benefits of the scattering filters to leverage structural information from the graph, while our experiments show the benefits of our method on various learning tasks.
arXiv Detail & Related papers (2022-01-22T00:47:41Z) - GRAND: Graph Neural Diffusion [15.00135729657076]
We present Graph Neural Diffusion (GRAND) that approaches deep learning on graphs as a continuous diffusion process.
In our model, the layer structure and topology correspond to the discretisation choices of temporal and spatial operators.
Key to the success of our models are stability with respect to perturbations in the data and this is addressed for both implicit and explicit discretisation schemes.
arXiv Detail & Related papers (2021-06-21T09:10:57Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
We propose a novel Hierarchical Message-passing Graph Neural Networks framework.
Key idea is generating a hierarchical structure that re-organises all nodes in a flat graph into multi-level super graphs.
We present the first model to implement this framework, termed Hierarchical Community-aware Graph Neural Network (HC-GNN)
arXiv Detail & Related papers (2020-09-08T13:11:07Z) - Stochastic Graph Neural Networks [123.39024384275054]
Graph neural networks (GNNs) model nonlinear representations in graph data with applications in distributed agent coordination, control, and planning.
Current GNN architectures assume ideal scenarios and ignore link fluctuations that occur due to environment, human factors, or external attacks.
In these situations, the GNN fails to address its distributed task if the topological randomness is not considered accordingly.
arXiv Detail & Related papers (2020-06-04T08:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.