Real-time High-Resolution Neural Network with Semantic Guidance for
Crack Segmentation
- URL: http://arxiv.org/abs/2307.00270v2
- Date: Mon, 5 Feb 2024 13:21:37 GMT
- Title: Real-time High-Resolution Neural Network with Semantic Guidance for
Crack Segmentation
- Authors: Yongshang Li, Ronggui Ma, Han Liu and Gaoli Cheng
- Abstract summary: This paper describes HrSegNet, a high-resolution network with semantic guidance specifically designed for crack segmentation.
HrSegNet guarantees real-time inference speed while preserving crack details.
This approach demonstrates that there is a trade-off between high-resolution modeling and real-time detection.
- Score: 4.651261550392625
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep learning plays an important role in crack segmentation, but most work
utilize off-the-shelf or improved models that have not been specifically
developed for this task. High-resolution convolution neural networks that are
sensitive to objects' location and detail help improve the performance of crack
segmentation, yet conflict with real-time detection. This paper describes
HrSegNet, a high-resolution network with semantic guidance specifically
designed for crack segmentation, which guarantees real-time inference speed
while preserving crack details. After evaluation on the composite dataset
CrackSeg9k and the scenario-specific datasets Asphalt3k and Concrete3k,
HrSegNet obtains state-of-the-art segmentation performance and efficiencies
that far exceed those of the compared models. This approach demonstrates that
there is a trade-off between high-resolution modeling and real-time detection,
which fosters the use of edge devices to analyze cracks in real-world
applications.
Related papers
- EfficientCrackNet: A Lightweight Model for Crack Segmentation [1.3689715712707347]
Crack detection is crucial for maintaining the structural integrity of buildings, pavements, and bridges.
Existing lightweight methods often face challenges including computational inefficiency, complex crack patterns, and difficult backgrounds.
We propose EfficientCrackNet, a lightweight hybrid model combining Convolutional Neural Networks (CNNs) and transformers for precise crack segmentation.
arXiv Detail & Related papers (2024-09-26T17:44:20Z) - Hybrid-Segmentor: A Hybrid Approach to Automated Fine-Grained Crack Segmentation in Civil Infrastructure [52.2025114590481]
We introduce Hybrid-Segmentor, an encoder-decoder based approach that is capable of extracting both fine-grained local and global crack features.
This allows the model to improve its generalization capabilities in distinguish various type of shapes, surfaces and sizes of cracks.
The proposed model outperforms existing benchmark models across 5 quantitative metrics (accuracy 0.971, precision 0.804, recall 0.744, F1-score 0.770, and IoU score 0.630), achieving state-of-the-art status.
arXiv Detail & Related papers (2024-09-04T16:47:16Z) - Staircase Cascaded Fusion of Lightweight Local Pattern Recognition and Long-Range Dependencies for Structural Crack Segmentation [28.157401919910914]
We propose a staircase cascaded fusion crack segmentation network (CrackSCF) that generates high-quality crack segmentation maps using minimal computational resources.
We constructed a staircase cascaded fusion module that effectively captures local patterns of cracks and long-range dependencies of pixels.
To reduce the computational resources required by the model, we introduced a lightweight convolution block, which replaces all convolution operations in the network.
arXiv Detail & Related papers (2024-08-23T03:21:51Z) - Revisiting Generative Adversarial Networks for Binary Semantic
Segmentation on Imbalanced Datasets [20.538287907723713]
Anomalous crack region detection is a typical binary semantic segmentation task, which aims to detect pixels representing cracks on pavement surface images automatically by algorithms.
Existing deep learning-based methods have achieved outcoming results on specific public pavement datasets, but the performance would deteriorate dramatically on imbalanced datasets.
We propose a deep learning framework based on conditional Generative Adversarial Networks (cGANs) for the anomalous crack region detection tasks at the pixel level.
arXiv Detail & Related papers (2024-02-03T19:24:40Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - A Threefold Review on Deep Semantic Segmentation: Efficiency-oriented,
Temporal and Depth-aware design [77.34726150561087]
We conduct a survey on the most relevant and recent advances in Deep Semantic in the context of vision for autonomous vehicles.
Our main objective is to provide a comprehensive discussion on the main methods, advantages, limitations, results and challenges faced from each perspective.
arXiv Detail & Related papers (2023-03-08T01:29:55Z) - Learning-Based Defect Recognitions for Autonomous UAV Inspections [1.713291434132985]
We have implemented a deep learning framework for crack detection based on classical network architectures including Alexnet, VGG, and Resnet.
Inspired by the feature pyramid network architecture, a hierarchical convolutional neural network (CNN) deep learning framework is also proposed.
A framework for automatic unmanned aerial vehicle inspections is also proposed and will be established for the crack inspection tasks of various concrete structures.
arXiv Detail & Related papers (2023-02-13T04:25:05Z) - Evaluation and Comparison of Deep Learning Methods for Pavement Crack
Identification with Visual Images [0.0]
pavement crack identification with visual images via deep learning algorithms has the advantages of not being limited by the material of object to be detected.
In the aspect of patch sample classification, the fine-tuned TL models can be equivalent to or even slightly better than the ED models in accuracy.
In the aspect of accurate crack location, both ED and GAN algorithms can achieve pixel-level segmentation and is expected to be detected in real time on low computing power platform.
arXiv Detail & Related papers (2021-12-20T08:23:43Z) - Real-time Semantic Segmentation with Fast Attention [94.88466483540692]
We propose a novel architecture for semantic segmentation of high-resolution images and videos in real-time.
The proposed architecture relies on our fast spatial attention, which is a simple yet efficient modification of the popular self-attention mechanism.
We show that results on multiple datasets demonstrate superior performance with better accuracy and speed compared to existing approaches.
arXiv Detail & Related papers (2020-07-07T22:37:16Z) - Real-Time High-Performance Semantic Image Segmentation of Urban Street
Scenes [98.65457534223539]
We propose a real-time high-performance DCNN-based method for robust semantic segmentation of urban street scenes.
The proposed method achieves the accuracy of 73.6% and 68.0% mean Intersection over Union (mIoU) with the inference speed of 51.0 fps and 39.3 fps.
arXiv Detail & Related papers (2020-03-11T08:45:53Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
We propose a new deep learning algorithm for fast salient object detection.
The proposed algorithm achieves competitive accuracy and high inference efficiency simultaneously with a single CPU thread.
arXiv Detail & Related papers (2020-01-22T15:23:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.