GenRec: Large Language Model for Generative Recommendation
- URL: http://arxiv.org/abs/2307.00457v2
- Date: Tue, 4 Jul 2023 20:04:58 GMT
- Title: GenRec: Large Language Model for Generative Recommendation
- Authors: Jianchao Ji, Zelong Li, Shuyuan Xu, Wenyue Hua, Yingqiang Ge, Juntao
Tan, Yongfeng Zhang
- Abstract summary: This paper presents an innovative approach to recommendation systems using large language models (LLMs) based on text data.
GenRec uses LLM's understanding ability to interpret context, learn user preferences, and generate relevant recommendation.
Our research underscores the potential of LLM-based generative recommendation in revolutionizing the domain of recommendation systems.
- Score: 41.22833600362077
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, large language models (LLM) have emerged as powerful tools
for diverse natural language processing tasks. However, their potential for
recommender systems under the generative recommendation paradigm remains
relatively unexplored. This paper presents an innovative approach to
recommendation systems using large language models (LLMs) based on text data.
In this paper, we present a novel LLM for generative recommendation (GenRec)
that utilized the expressive power of LLM to directly generate the target item
to recommend, rather than calculating ranking score for each candidate item one
by one as in traditional discriminative recommendation. GenRec uses LLM's
understanding ability to interpret context, learn user preferences, and
generate relevant recommendation. Our proposed approach leverages the vast
knowledge encoded in large language models to accomplish recommendation tasks.
We first we formulate specialized prompts to enhance the ability of LLM to
comprehend recommendation tasks. Subsequently, we use these prompts to
fine-tune the LLaMA backbone LLM on a dataset of user-item interactions,
represented by textual data, to capture user preferences and item
characteristics. Our research underscores the potential of LLM-based generative
recommendation in revolutionizing the domain of recommendation systems and
offers a foundational framework for future explorations in this field. We
conduct extensive experiments on benchmark datasets, and the experiments shows
that our GenRec has significant better results on large dataset.
Related papers
- Beyond Retrieval: Generating Narratives in Conversational Recommender Systems [4.912663905306209]
We introduce a new dataset (REGEN) for natural language generation tasks in conversational recommendations.
We establish benchmarks using well-known generative metrics, and perform an automated evaluation of the new dataset using a rater LLM.
And to the best of our knowledge, represents the first attempt to analyze the capabilities of LLMs in understanding recommender signals and generating rich narratives.
arXiv Detail & Related papers (2024-10-22T07:53:41Z) - IDGenRec: LLM-RecSys Alignment with Textual ID Learning [48.018397048791115]
We propose IDGen, representing each item as a unique, concise, semantically rich, platform-agnostic textual ID.
We show that IDGen consistently surpasses existing models in sequential recommendation under standard experimental setting.
Results show that the zero-shot performance of the pre-trained foundation model is comparable to or even better than some traditional recommendation models.
arXiv Detail & Related papers (2024-03-27T21:22:37Z) - Unlocking the Potential of Large Language Models for Explainable
Recommendations [55.29843710657637]
It remains uncertain what impact replacing the explanation generator with the recently emerging large language models (LLMs) would have.
In this study, we propose LLMXRec, a simple yet effective two-stage explainable recommendation framework.
By adopting several key fine-tuning techniques, controllable and fluent explanations can be well generated.
arXiv Detail & Related papers (2023-12-25T09:09:54Z) - LlamaRec: Two-Stage Recommendation using Large Language Models for
Ranking [10.671747198171136]
We propose a two-stage framework using large language models for ranking-based recommendation (LlamaRec)
In particular, we use small-scale sequential recommenders to retrieve candidates based on the user interaction history.
LlamaRec consistently achieves datasets superior performance in both recommendation performance and efficiency.
arXiv Detail & Related papers (2023-10-25T06:23:48Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
The application of Large Language Models (LLMs) in the recommendation domain has not been thoroughly investigated.
We benchmark several popular off-the-shelf LLMs on five recommendation tasks, including rating prediction, sequential recommendation, direct recommendation, explanation generation, and review summarization.
The benchmark results indicate that LLMs displayed only moderate proficiency in accuracy-based tasks such as sequential and direct recommendation.
arXiv Detail & Related papers (2023-08-23T16:32:54Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP)
This survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec)
arXiv Detail & Related papers (2023-05-31T13:51:26Z) - PALR: Personalization Aware LLMs for Recommendation [7.407353565043918]
PALR aims to combine user history behaviors (such as clicks, purchases, ratings, etc.) with large language models (LLMs) to generate user preferred items.
Our solution outperforms state-of-the-art models on various sequential recommendation tasks.
arXiv Detail & Related papers (2023-05-12T17:21:33Z) - Recommendation as Instruction Following: A Large Language Model
Empowered Recommendation Approach [83.62750225073341]
We consider recommendation as instruction following by large language models (LLMs)
We first design a general instruction format for describing the preference, intention, task form and context of a user in natural language.
Then we manually design 39 instruction templates and automatically generate a large amount of user-personalized instruction data.
arXiv Detail & Related papers (2023-05-11T17:39:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.