Mode-wise Principal Subspace Pursuit and Matrix Spiked Covariance Model
- URL: http://arxiv.org/abs/2307.00575v1
- Date: Sun, 2 Jul 2023 13:59:47 GMT
- Title: Mode-wise Principal Subspace Pursuit and Matrix Spiked Covariance Model
- Authors: Runshi Tang and Ming Yuan and Anru R. Zhang
- Abstract summary: We introduce a novel framework called Mode-wise Principal Subspace Pursuit (MOP-UP) to extract hidden variations in both the row and column dimensions for matrix data.
The effectiveness and practical merits of the proposed framework are demonstrated through experiments on both simulated and real datasets.
- Score: 12.381700512445805
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper introduces a novel framework called Mode-wise Principal Subspace
Pursuit (MOP-UP) to extract hidden variations in both the row and column
dimensions for matrix data. To enhance the understanding of the framework, we
introduce a class of matrix-variate spiked covariance models that serve as
inspiration for the development of the MOP-UP algorithm. The MOP-UP algorithm
consists of two steps: Average Subspace Capture (ASC) and Alternating
Projection (AP). These steps are specifically designed to capture the row-wise
and column-wise dimension-reduced subspaces which contain the most informative
features of the data. ASC utilizes a novel average projection operator as
initialization and achieves exact recovery in the noiseless setting. We analyze
the convergence and non-asymptotic error bounds of MOP-UP, introducing a
blockwise matrix eigenvalue perturbation bound that proves the desired bound,
where classic perturbation bounds fail. The effectiveness and practical merits
of the proposed framework are demonstrated through experiments on both
simulated and real datasets. Lastly, we discuss generalizations of our approach
to higher-order data.
Related papers
- Regularized Projection Matrix Approximation with Applications to Community Detection [1.3761665705201904]
This paper introduces a regularized projection matrix approximation framework designed to recover cluster information from the affinity matrix.
We investigate three distinct penalty functions, each specifically tailored to address bounded, positive, and sparse scenarios.
Numerical experiments conducted on both synthetic and real-world datasets reveal that our regularized projection matrix approximation approach significantly outperforms state-of-the-art methods in clustering performance.
arXiv Detail & Related papers (2024-05-26T15:18:22Z) - Synergistic eigenanalysis of covariance and Hessian matrices for enhanced binary classification [72.77513633290056]
We present a novel approach that combines the eigenanalysis of a covariance matrix evaluated on a training set with a Hessian matrix evaluated on a deep learning model.
Our method captures intricate patterns and relationships, enhancing classification performance.
arXiv Detail & Related papers (2024-02-14T16:10:42Z) - Enhanced Latent Multi-view Subspace Clustering [25.343388834470247]
We propose an Enhanced Latent Multi-view Subspace Clustering (ELMSC) method for recovering latent space representation.
Our proposed ELMSC is able to achieve higher clustering performance than some state-of-art multi-view clustering methods.
arXiv Detail & Related papers (2023-12-22T15:28:55Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
Clustered multi-task compressive sensing is a hierarchical model that solves multiple compressive sensing tasks.
The existing inference algorithm for this model is computationally expensive and does not scale well in high dimensions.
We propose a new algorithm that substantially accelerates model inference by avoiding the need to explicitly compute these covariance matrices.
arXiv Detail & Related papers (2023-09-30T15:57:14Z) - Classification of BCI-EEG based on augmented covariance matrix [0.0]
We propose a new framework based on the augmented covariance extracted from an autoregressive model to improve motor imagery classification.
We will test our approach on several datasets and several subjects using the MOABB framework.
arXiv Detail & Related papers (2023-02-09T09:04:25Z) - Semi-Supervised Subspace Clustering via Tensor Low-Rank Representation [64.49871502193477]
We propose a novel semi-supervised subspace clustering method, which is able to simultaneously augment the initial supervisory information and construct a discriminative affinity matrix.
Comprehensive experimental results on six commonly-used benchmark datasets demonstrate the superiority of our method over state-of-the-art methods.
arXiv Detail & Related papers (2022-05-21T01:47:17Z) - Graph Constrained Data Representation Learning for Human Motion
Segmentation [14.611777974037194]
We propose a novel unsupervised model that learns a representation of the data and digs clustering information from the data itself.
Experimental results on four benchmark datasets for HMS demonstrate that our approach achieves significantly better clustering performance then state-of-the-art methods.
arXiv Detail & Related papers (2021-07-28T13:49:16Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
We propose a simple and efficient unsupervised feature selection method, by combining reconstruction error with $l_2,p$-norm regularization.
We present an efficient optimization algorithm to solve the proposed unsupervised model, and analyse the convergence and computational complexity of the algorithm theoretically.
arXiv Detail & Related papers (2020-12-29T04:08:38Z) - Two-Dimensional Semi-Nonnegative Matrix Factorization for Clustering [50.43424130281065]
We propose a new Semi-Nonnegative Matrix Factorization method for 2-dimensional (2D) data, named TS-NMF.
It overcomes the drawback of existing methods that seriously damage the spatial information of the data by converting 2D data to vectors in a preprocessing step.
arXiv Detail & Related papers (2020-05-19T05:54:14Z) - Multi-Objective Matrix Normalization for Fine-grained Visual Recognition [153.49014114484424]
Bilinear pooling achieves great success in fine-grained visual recognition (FGVC)
Recent methods have shown that the matrix power normalization can stabilize the second-order information in bilinear features.
We propose an efficient Multi-Objective Matrix Normalization (MOMN) method that can simultaneously normalize a bilinear representation.
arXiv Detail & Related papers (2020-03-30T08:40:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.