Automatic Design of Semantic Similarity Ensembles Using Grammatical Evolution
- URL: http://arxiv.org/abs/2307.00925v6
- Date: Fri, 22 Nov 2024 12:42:14 GMT
- Title: Automatic Design of Semantic Similarity Ensembles Using Grammatical Evolution
- Authors: Jorge Martinez-Gil,
- Abstract summary: No single semantic similarity measure is the most appropriate for all tasks, and researchers often use ensemble strategies to ensure performance.
This research work proposes a method for automatically designing semantic similarity ensembles.
Our proposed method uses grammatical evolution, for the first time, to automatically select and aggregate measures from a pool of candidates to create an ensemble that maximizes correlation to human judgment.
- Score: 0.0
- License:
- Abstract: Semantic similarity measures are widely used in natural language processing to catalyze various computer-related tasks. However, no single semantic similarity measure is the most appropriate for all tasks, and researchers often use ensemble strategies to ensure performance. This research work proposes a method for automatically designing semantic similarity ensembles. In fact, our proposed method uses grammatical evolution, for the first time, to automatically select and aggregate measures from a pool of candidates to create an ensemble that maximizes correlation to human judgment. The method is evaluated on several benchmark datasets and compared to state-of-the-art ensembles, showing that it can significantly improve similarity assessment accuracy and outperform existing methods in some cases. As a result, our research demonstrates the potential of using grammatical evolution to automatically compare text and prove the benefits of using ensembles for semantic similarity tasks. The source code that illustrates our approach can be downloaded from https://github.com/jorge-martinez-gil/sesige.
Related papers
- Relation-aware Ensemble Learning for Knowledge Graph Embedding [68.94900786314666]
We propose to learn an ensemble by leveraging existing methods in a relation-aware manner.
exploring these semantics using relation-aware ensemble leads to a much larger search space than general ensemble methods.
We propose a divide-search-combine algorithm RelEns-DSC that searches the relation-wise ensemble weights independently.
arXiv Detail & Related papers (2023-10-13T07:40:12Z) - Semantic similarity prediction is better than other semantic similarity
measures [5.176134438571082]
We argue that when we are only interested in measuring the semantic similarity, it is better to directly predict the similarity using a fine-tuned model for such a task.
Using a fine-tuned model for the Semantic Textual Similarity Benchmark tasks (STS-B) from the GLUE benchmark, we define the STSScore approach and show that the resulting similarity is better aligned with our expectations on a robust semantic similarity measure than other approaches.
arXiv Detail & Related papers (2023-09-22T08:11:01Z) - A Comparative Study of Sentence Embedding Models for Assessing Semantic
Variation [0.0]
We compare several recent sentence embedding methods via time-series of semantic similarity between successive sentences and matrices of pairwise sentence similarity for multiple books of literature.
We find that most of the sentence embedding methods considered do infer highly correlated patterns of semantic similarity in a given document, but show interesting differences.
arXiv Detail & Related papers (2023-08-08T23:31:10Z) - Syntax and Semantics Meet in the "Middle": Probing the Syntax-Semantics
Interface of LMs Through Agentivity [68.8204255655161]
We present the semantic notion of agentivity as a case study for probing such interactions.
This suggests LMs may potentially serve as more useful tools for linguistic annotation, theory testing, and discovery.
arXiv Detail & Related papers (2023-05-29T16:24:01Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
We propose a generative model for learning multilingual text embeddings.
Our model operates on parallel data in $N$ languages.
We evaluate this method on a suite of tasks including semantic similarity, bitext mining, and cross-lingual question retrieval.
arXiv Detail & Related papers (2022-12-21T02:41:40Z) - Comparing in context: Improving cosine similarity measures with a metric
tensor [0.0]
Cosine similarity is a widely used measure of the relatedness of pre-trained word embeddings, trained on a language modeling goal.
We propose instead the use of an extended cosine similarity measure to improve performance on that task, with gains in interpretability.
We learn contextualized metrics and compare the results with the baseline values obtained using the standard cosine similarity measure, which consistently shows improvement.
We also train a contextualized similarity measure for both SimLex-999 and WordSim-353, comparing the results with the corresponding baselines, and using these datasets as independent test sets for the all-context similarity measure learned on
arXiv Detail & Related papers (2022-03-28T18:04:26Z) - On The Ingredients of an Effective Zero-shot Semantic Parser [95.01623036661468]
We analyze zero-shot learning by paraphrasing training examples of canonical utterances and programs from a grammar.
We propose bridging these gaps using improved grammars, stronger paraphrasers, and efficient learning methods.
Our model achieves strong performance on two semantic parsing benchmarks (Scholar, Geo) with zero labeled data.
arXiv Detail & Related papers (2021-10-15T21:41:16Z) - Rethinking End-to-End Evaluation of Decomposable Tasks: A Case Study on
Spoken Language Understanding [101.24748444126982]
Decomposable tasks are complex and comprise of a hierarchy of sub-tasks.
Existing benchmarks, however, typically hold out examples for only the surface-level sub-task.
We propose a framework to construct robust test sets using coordinate ascent over sub-task specific utility functions.
arXiv Detail & Related papers (2021-06-29T02:53:59Z) - Automated Concatenation of Embeddings for Structured Prediction [75.44925576268052]
We propose Automated Concatenation of Embeddings (ACE) to automate the process of finding better concatenations of embeddings for structured prediction tasks.
We follow strategies in reinforcement learning to optimize the parameters of the controller and compute the reward based on the accuracy of a task model.
arXiv Detail & Related papers (2020-10-10T14:03:20Z) - Leveraging Cognitive Search Patterns to Enhance Automated Natural
Language Retrieval Performance [0.0]
We show that cognitive reformulation patterns that mimic user search behaviour are highlighted.
We formalize the application of these patterns by considering a query conceptual representation.
A genetic algorithm-based weighting process allows placing emphasis on terms according to their conceptual role-type.
arXiv Detail & Related papers (2020-04-21T14:13:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.