Joint Coordinate Regression and Association For Multi-Person Pose Estimation, A Pure Neural Network Approach
- URL: http://arxiv.org/abs/2307.01004v2
- Date: Fri, 19 Apr 2024 08:59:37 GMT
- Title: Joint Coordinate Regression and Association For Multi-Person Pose Estimation, A Pure Neural Network Approach
- Authors: Dongyang Yu, Yunshi Xie, Wangpeng An, Li Zhang, Yufeng Yao,
- Abstract summary: We introduce a novel one-stage end-to-end multi-person 2D pose estimation algorithm, known as Joint Coordinate Regression and Association (JCRA)
The proposed algorithm is fast, accurate, effective, and simple. The one-stage end-to-end network architecture significantly improves the inference speed of JCRA.
Extensive experiments on the MS COCO and CrowdPose benchmarks demonstrate that JCRA outperforms state-of-the-art approaches in both accuracy and efficiency.
- Score: 3.7878984912613256
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel one-stage end-to-end multi-person 2D pose estimation algorithm, known as Joint Coordinate Regression and Association (JCRA), that produces human pose joints and associations without requiring any post-processing. The proposed algorithm is fast, accurate, effective, and simple. The one-stage end-to-end network architecture significantly improves the inference speed of JCRA. Meanwhile, we devised a symmetric network structure for both the encoder and decoder, which ensures high accuracy in identifying keypoints. It follows an architecture that directly outputs part positions via a transformer network, resulting in a significant improvement in performance. Extensive experiments on the MS COCO and CrowdPose benchmarks demonstrate that JCRA outperforms state-of-the-art approaches in both accuracy and efficiency. Moreover, JCRA demonstrates 69.2 mAP and is 78\% faster at inference acceleration than previous state-of-the-art bottom-up algorithms. The code for this algorithm will be publicly available.
Related papers
- Simple Contrastive Graph Clustering [41.396185271303956]
We propose a Simple Contrastive Graph Clustering (SCGC) algorithm to improve the existing methods.
Our algorithm outperforms the recent contrastive deep clustering competitors with at least seven times speedup on average.
arXiv Detail & Related papers (2022-05-11T06:45:19Z) - ZARTS: On Zero-order Optimization for Neural Architecture Search [94.41017048659664]
Differentiable architecture search (DARTS) has been a popular one-shot paradigm for NAS due to its high efficiency.
This work turns to zero-order optimization and proposes a novel NAS scheme, called ZARTS, to search without enforcing the above approximation.
In particular, results on 12 benchmarks verify the outstanding robustness of ZARTS, where the performance of DARTS collapses due to its known instability issue.
arXiv Detail & Related papers (2021-10-10T09:35:15Z) - Landmark Regularization: Ranking Guided Super-Net Training in Neural
Architecture Search [70.57382341642418]
Weight sharing has become a de facto standard in neural architecture search because it enables the search to be done on commodity hardware.
Recent works have empirically shown a ranking disorder between the performance of stand-alone architectures and that of the corresponding shared-weight networks.
We propose a regularization term that aims to maximize the correlation between the performance rankings of the shared-weight network and that of the standalone architectures.
arXiv Detail & Related papers (2021-04-12T09:32:33Z) - SIMPLE: SIngle-network with Mimicking and Point Learning for Bottom-up
Human Pose Estimation [81.03485688525133]
We propose a novel multi-person pose estimation framework, SIngle-network with Mimicking and Point Learning for Bottom-up Human Pose Estimation (SIMPLE)
Specifically, in the training process, we enable SIMPLE to mimic the pose knowledge from the high-performance top-down pipeline.
Besides, SIMPLE formulates human detection and pose estimation as a unified point learning framework to complement each other in single-network.
arXiv Detail & Related papers (2021-04-06T13:12:51Z) - EQ-Net: A Unified Deep Learning Framework for Log-Likelihood Ratio
Estimation and Quantization [25.484585922608193]
We introduce EQ-Net: the first holistic framework that solves both the tasks of log-likelihood ratio (LLR) estimation and quantization using a data-driven method.
We carry out extensive experimental evaluation and demonstrate that our single architecture achieves state-of-the-art results on both tasks.
arXiv Detail & Related papers (2020-12-23T18:11:30Z) - Multi-objective Neural Architecture Search with Almost No Training [9.93048700248444]
We propose an effective alternative, dubbed Random-Weight Evaluation (RWE), to rapidly estimate the performance of network architectures.
RWE reduces the computational cost of evaluating an architecture from hours to seconds.
When integrated within an evolutionary multi-objective algorithm, RWE obtains a set of efficient architectures with state-of-the-art performance on CIFAR-10 with less than two hours' searching on a single GPU card.
arXiv Detail & Related papers (2020-11-27T07:39:17Z) - Temporal Attention-Augmented Graph Convolutional Network for Efficient
Skeleton-Based Human Action Recognition [97.14064057840089]
Graphal networks (GCNs) have been very successful in modeling non-Euclidean data structures.
Most GCN-based action recognition methods use deep feed-forward networks with high computational complexity to process all skeletons in an action.
We propose a temporal attention module (TAM) for increasing the efficiency in skeleton-based action recognition.
arXiv Detail & Related papers (2020-10-23T08:01:55Z) - AP-Loss for Accurate One-Stage Object Detection [49.13608882885456]
One-stage object detectors are trained by optimizing classification-loss and localization-loss simultaneously.
The former suffers much from extreme foreground-background imbalance due to the large number of anchors.
This paper proposes a novel framework to replace the classification task in one-stage detectors with a ranking task.
arXiv Detail & Related papers (2020-08-17T13:22:01Z) - Cyclic Differentiable Architecture Search [99.12381460261841]
Differentiable ARchiTecture Search, i.e., DARTS, has drawn great attention in neural architecture search.
We propose new joint objectives and a novel Cyclic Differentiable ARchiTecture Search framework, dubbed CDARTS.
In the DARTS search space, we achieve 97.52% top-1 accuracy on CIFAR10 and 76.3% top-1 accuracy on ImageNet.
arXiv Detail & Related papers (2020-06-18T17:55:19Z) - Learning Robust Feature Representations for Scene Text Detection [0.0]
We present a network architecture derived from the loss to maximize conditional log-likelihood.
By extending the layer of latent variables to multiple layers, the network is able to learn robust features on scale.
In experiments, the proposed algorithm significantly outperforms state-of-the-art methods in terms of both recall and precision.
arXiv Detail & Related papers (2020-05-26T01:06:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.