Self-Tuning PID Control via a Hybrid Actor-Critic-Based Neural Structure
for Quadcopter Control
- URL: http://arxiv.org/abs/2307.01312v1
- Date: Mon, 3 Jul 2023 19:35:52 GMT
- Title: Self-Tuning PID Control via a Hybrid Actor-Critic-Based Neural Structure
for Quadcopter Control
- Authors: Iman Sharifi, Aria Alasty
- Abstract summary: Proportional-Integrator-Derivative (PID) controller is used in a wide range of industrial and experimental processes.
Due to the uncertainty of model parameters and external disturbances, real systems such as Quadrotors need more robust and reliable PID controllers.
In this research, a self-tuning PID controller using a Reinforcement-Learning-based Neural Network has been investigated.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Proportional-Integrator-Derivative (PID) controller is used in a wide range
of industrial and experimental processes. There are a couple of offline methods
for tuning PID gains. However, due to the uncertainty of model parameters and
external disturbances, real systems such as Quadrotors need more robust and
reliable PID controllers. In this research, a self-tuning PID controller using
a Reinforcement-Learning-based Neural Network for attitude and altitude control
of a Quadrotor has been investigated. An Incremental PID, which contains static
and dynamic gains, has been considered and only the variable gains have been
tuned. To tune dynamic gains, a model-free actor-critic-based hybrid neural
structure was used that was able to properly tune PID gains, and also has done
the best as an identifier. In both tunning and identification tasks, a Neural
Network with two hidden layers and sigmoid activation functions has been
learned using Adaptive Momentum (ADAM) optimizer and Back-Propagation (BP)
algorithm. This method is online, able to tackle disturbance, and fast in
training. In addition to robustness to mass uncertainty and wind gust
disturbance, results showed that the proposed method had a better performance
when compared to a PID controller with constant gains.
Related papers
- Function Approximation for Reinforcement Learning Controller for Energy from Spread Waves [69.9104427437916]
Multi-generator Wave Energy Converters (WEC) must handle multiple simultaneous waves coming from different directions called spread waves.
These complex devices need controllers with multiple objectives of energy capture efficiency, reduction of structural stress to limit maintenance, and proactive protection against high waves.
In this paper, we explore different function approximations for the policy and critic networks in modeling the sequential nature of the system dynamics.
arXiv Detail & Related papers (2024-04-17T02:04:10Z) - PID Control-Based Self-Healing to Improve the Robustness of Large Language Models [23.418411870842178]
Minor perturbations can significantly reduce the performance of well-trained language models.
We construct a computationally efficient self-healing process to correct undesired model behavior.
The proposed PID control-based self-healing is a low cost framework that improves the robustness of pre-trained large language models.
arXiv Detail & Related papers (2024-03-31T23:46:51Z) - Beyond PID Controllers: PPO with Neuralized PID Policy for Proton Beam
Intensity Control in Mu2e [3.860979702631594]
We introduce a novel Proximal Policy Optimization (PPO) algorithm aimed at maintaining a uniform proton beam intensity delivery in the Muon to Electron Conversion Experiment (Mu2e) at Fermi National Accelerator Laboratory (Fermilab)
Our primary objective is to regulate the spill process to ensure a consistent intensity profile, with the ultimate goal of creating an automated controller capable of providing real-time feedback and calibration of the Spill Regulation System (SRS) parameters on a millisecond timescale.
arXiv Detail & Related papers (2023-12-28T21:35:20Z) - Sub-linear Regret in Adaptive Model Predictive Control [56.705978425244496]
We present STT-MPC (Self-Tuning Tube-based Model Predictive Control), an online oracle that combines the certainty-equivalence principle and polytopic tubes.
We analyze the regret of the algorithm, when compared to an algorithm initially aware of the system dynamics.
arXiv Detail & Related papers (2023-10-07T15:07:10Z) - Real-Time Model-Free Deep Reinforcement Learning for Force Control of a
Series Elastic Actuator [56.11574814802912]
State-of-the art robotic applications utilize series elastic actuators (SEAs) with closed-loop force control to achieve complex tasks such as walking, lifting, and manipulation.
Model-free PID control methods are more prone to instability due to nonlinearities in the SEA.
Deep reinforcement learning has proved to be an effective model-free method for continuous control tasks.
arXiv Detail & Related papers (2023-04-11T00:51:47Z) - Performance-Driven Controller Tuning via Derivative-Free Reinforcement
Learning [6.5158195776494]
We tackle the controller tuning problem using a novel derivative-free reinforcement learning framework.
We conduct numerical experiments on two concrete examples from autonomous driving, namely, adaptive cruise control with PID controller and trajectory tracking with MPC controller.
Experimental results show that the proposed method outperforms popular baselines and highlight its strong potential for controller tuning.
arXiv Detail & Related papers (2022-09-11T13:01:14Z) - On Controller Tuning with Time-Varying Bayesian Optimization [74.57758188038375]
We will use time-varying optimization (TVBO) to tune controllers online in changing environments using appropriate prior knowledge on the control objective and its changes.
We propose a novel TVBO strategy using Uncertainty-Injection (UI), which incorporates the assumption of incremental and lasting changes.
Our model outperforms the state-of-the-art method in TVBO, exhibiting reduced regret and fewer unstable parameter configurations.
arXiv Detail & Related papers (2022-07-22T14:54:13Z) - DiffLoop: Tuning PID controllers by differentiating through the feedback
loop [8.477619837043214]
This paper investigates PID tuning and anti-windup measures.
In particular, we use a cost function and generate gradients to improve controller performance.
arXiv Detail & Related papers (2021-06-19T15:26:46Z) - DAIS: Automatic Channel Pruning via Differentiable Annealing Indicator
Search [55.164053971213576]
convolutional neural network has achieved great success in fulfilling computer vision tasks despite large computation overhead.
Structured (channel) pruning is usually applied to reduce the model redundancy while preserving the network structure.
Existing structured pruning methods require hand-crafted rules which may lead to tremendous pruning space.
arXiv Detail & Related papers (2020-11-04T07:43:01Z) - Control Design of Autonomous Drone Using Deep Learning Based Image
Understanding Techniques [1.0953917735844645]
This paper presents a new framework to use images as the inputs for the controller to have autonomous flight, considering the noisy indoor environment and uncertainties.
A new Proportional-Integral-Derivative-Accelerated (PIDA) control with a derivative filter is proposed to improve drone/quadcopter flight stability within a noisy environment.
arXiv Detail & Related papers (2020-04-27T15:50:04Z) - Logarithmic Regret Bound in Partially Observable Linear Dynamical
Systems [91.43582419264763]
We study the problem of system identification and adaptive control in partially observable linear dynamical systems.
We present the first model estimation method with finite-time guarantees in both open and closed-loop system identification.
We show that AdaptOn is the first algorithm that achieves $textpolylogleft(Tright)$ regret in adaptive control of unknown partially observable linear dynamical systems.
arXiv Detail & Related papers (2020-03-25T06:00:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.