A Neural Collapse Perspective on Feature Evolution in Graph Neural
Networks
- URL: http://arxiv.org/abs/2307.01951v2
- Date: Thu, 26 Oct 2023 05:22:56 GMT
- Title: A Neural Collapse Perspective on Feature Evolution in Graph Neural
Networks
- Authors: Vignesh Kothapalli, Tom Tirer, Joan Bruna
- Abstract summary: Graph neural networks (GNNs) have become increasingly popular for classification tasks on graph-structured data.
In this paper, we focus on node-wise classification and explore the feature evolution through the lens of the "Neural Collapse" phenomenon.
We show that even an "optimistic" mathematical model requires that the graphs obey a strict structural condition in order to possess a minimizer with exact collapse.
- Score: 44.31777384413466
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph neural networks (GNNs) have become increasingly popular for
classification tasks on graph-structured data. Yet, the interplay between graph
topology and feature evolution in GNNs is not well understood. In this paper,
we focus on node-wise classification, illustrated with community detection on
stochastic block model graphs, and explore the feature evolution through the
lens of the "Neural Collapse" (NC) phenomenon. When training instance-wise deep
classifiers (e.g. for image classification) beyond the zero training error
point, NC demonstrates a reduction in the deepest features' within-class
variability and an increased alignment of their class means to certain
symmetric structures. We start with an empirical study that shows that a
decrease in within-class variability is also prevalent in the node-wise
classification setting, however, not to the extent observed in the
instance-wise case. Then, we theoretically study this distinction.
Specifically, we show that even an "optimistic" mathematical model requires
that the graphs obey a strict structural condition in order to possess a
minimizer with exact collapse. Interestingly, this condition is viable also for
heterophilic graphs and relates to recent empirical studies on settings with
improved GNNs' generalization. Furthermore, by studying the gradient dynamics
of the theoretical model, we provide reasoning for the partial collapse
observed empirically. Finally, we present a study on the evolution of within-
and between-class feature variability across layers of a well-trained GNN and
contrast the behavior with spectral methods.
Related papers
- LSEnet: Lorentz Structural Entropy Neural Network for Deep Graph Clustering [59.89626219328127]
Graph clustering is a fundamental problem in machine learning.
Deep learning methods achieve the state-of-the-art results in recent years, but they still cannot work without predefined cluster numbers.
We propose to address this problem from a fresh perspective of graph information theory.
arXiv Detail & Related papers (2024-05-20T05:46:41Z) - Heterophily-Based Graph Neural Network for Imbalanced Classification [19.51668009720269]
We introduce a unique approach that tackles imbalanced classification on graphs by considering graph heterophily.
We propose Fast Im-GBK, which integrates an imbalance classification strategy with heterophily-aware GNNs.
Our experiments on real-world graphs demonstrate our model's superiority in classification performance and efficiency for node classification tasks.
arXiv Detail & Related papers (2023-10-12T21:19:47Z) - Towards Demystifying the Generalization Behaviors When Neural Collapse
Emerges [132.62934175555145]
Neural Collapse (NC) is a well-known phenomenon of deep neural networks in the terminal phase of training (TPT)
We propose a theoretical explanation for why continuing training can still lead to accuracy improvement on test set, even after the train accuracy has reached 100%.
We refer to this newly discovered property as "non-conservative generalization"
arXiv Detail & Related papers (2023-10-12T14:29:02Z) - Graph Neural Networks Provably Benefit from Structural Information: A
Feature Learning Perspective [53.999128831324576]
Graph neural networks (GNNs) have pioneered advancements in graph representation learning.
This study investigates the role of graph convolution within the context of feature learning theory.
arXiv Detail & Related papers (2023-06-24T10:21:11Z) - Explaining and Adapting Graph Conditional Shift [28.532526595793364]
Graph Neural Networks (GNNs) have shown remarkable performance on graph-structured data.
Recent empirical studies suggest that GNNs are very susceptible to distribution shift.
arXiv Detail & Related papers (2023-06-05T21:17:48Z) - OrthoReg: Improving Graph-regularized MLPs via Orthogonality
Regularization [66.30021126251725]
Graph Neural Networks (GNNs) are currently dominating in modeling graphstructure data.
Graph-regularized networks (GR-MLPs) implicitly inject the graph structure information into model weights, while their performance can hardly match that of GNNs in most tasks.
We show that GR-MLPs suffer from dimensional collapse, a phenomenon in which the largest a few eigenvalues dominate the embedding space.
We propose OrthoReg, a novel GR-MLP model to mitigate the dimensional collapse issue.
arXiv Detail & Related papers (2023-01-31T21:20:48Z) - Analysis of Convolutions, Non-linearity and Depth in Graph Neural
Networks using Neural Tangent Kernel [8.824340350342512]
Graph Neural Networks (GNNs) are designed to exploit the structural information of the data by aggregating the neighboring nodes.
We theoretically analyze the influence of different aspects of the GNN architecture using the Graph Neural Kernel in a semi-supervised node classification setting.
We prove that: (i) linear networks capture the class information as good as ReLU networks; (ii) row normalization preserves the underlying class structure better than other convolutions; (iii) performance degrades with network depth due to over-smoothing; (iv) skip connections retain the class information even at infinite depth, thereby eliminating over-smooth
arXiv Detail & Related papers (2022-10-18T12:28:37Z) - Uncovering the Structural Fairness in Graph Contrastive Learning [87.65091052291544]
Graph contrastive learning (GCL) has emerged as a promising self-supervised approach for learning node representations.
We show that representations obtained by GCL methods are already fairer to degree bias than those learned by GCN.
We devise a novel graph augmentation method, called GRAph contrastive learning for DEgree bias (GRADE), which applies different strategies to low- and high-degree nodes.
arXiv Detail & Related papers (2022-10-06T15:58:25Z) - Graph Neural Network with Curriculum Learning for Imbalanced Node
Classification [21.085314408929058]
Graph Neural Network (GNN) is an emerging technique for graph-based learning tasks such as node classification.
In this work, we reveal the vulnerability of GNN to the imbalance of node labels.
We propose a novel graph neural network framework with curriculum learning (GNN-CL) consisting of two modules.
arXiv Detail & Related papers (2022-02-05T10:46:11Z) - Stochastic Graph Recurrent Neural Network [6.656993023468793]
We propose SGRNN, a novel neural architecture that applies latent variables to simultaneously capture evolution in node attributes and topology.
Specifically, deterministic states are separated from states in the iterative process to suppress mutual interference.
Experiments on real-world datasets demonstrate the effectiveness of the proposed model.
arXiv Detail & Related papers (2020-09-01T16:14:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.