Multivariate Time Series Classification: A Deep Learning Approach
- URL: http://arxiv.org/abs/2307.02253v1
- Date: Wed, 5 Jul 2023 12:50:48 GMT
- Title: Multivariate Time Series Classification: A Deep Learning Approach
- Authors: Mohamed Abouelnaga, Julien Vitay, Aida Farahani
- Abstract summary: This paper investigates different methods and various neural network architectures applicable in the time series classification domain.
Data is obtained from a fleet of gas sensors that measure and track quantities such as oxygen and sound.
With the help of this data, we can detect events such as occupancy in a specific environment.
- Score: 1.0742675209112622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates different methods and various neural network
architectures applicable in the time series classification domain. The data is
obtained from a fleet of gas sensors that measure and track quantities such as
oxygen and sound. With the help of this data, we can detect events such as
occupancy in a specific environment. At first, we analyze the time series data
to understand the effect of different parameters, such as the sequence length,
when training our models. These models employ Fully Convolutional Networks
(FCN) and Long Short-Term Memory (LSTM) for supervised learning and Recurrent
Autoencoders for semisupervised learning. Throughout this study, we spot the
differences between these methods based on metrics such as precision and recall
identifying which technique best suits this problem.
Related papers
- SMORE: Similarity-based Hyperdimensional Domain Adaptation for
Multi-Sensor Time Series Classification [17.052624039805856]
We propose SMORE, a novel resource-efficient domain adaptation (DA) algorithm for multi-sensor time series classification.
SMORE achieves on average 1.98% higher accuracy than state-of-the-art (SOTA) DNN-based DA algorithms with 18.81x faster training and 4.63x faster inference.
arXiv Detail & Related papers (2024-02-20T18:48:49Z) - Autoencoder Based Iterative Modeling and Multivariate Time-Series
Subsequence Clustering Algorithm [0.0]
This paper introduces an algorithm for the detection of change-points and the identification of the corresponding subsequences in transient time-series data (MTSD)
We use a recurrent neural network (RNN) based Autoencoder (AE) which is iteratively trained on incoming data.
A model of the identified subsequence is saved and used for recognition of repeating subsequences as well as fast offline clustering.
arXiv Detail & Related papers (2022-09-09T09:59:56Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
Implicit neural representations (INRs) have recently emerged as a powerful tool that provides an accurate and resolution-independent encoding of data.
In this paper, we analyze the representation of time series using INRs, comparing different activation functions in terms of reconstruction accuracy and training convergence speed.
We propose a hypernetwork architecture that leverages INRs to learn a compressed latent representation of an entire time series dataset.
arXiv Detail & Related papers (2022-08-11T14:05:51Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
Time series data are ubiquitous in several domains as climate, economics and health care.
Recent conceptual approach relies on time series mapping to complex networks.
Network analysis can be used to characterize different types of time series.
arXiv Detail & Related papers (2021-10-11T13:46:28Z) - Multimodal Meta-Learning for Time Series Regression [3.135152720206844]
We will explore the idea of using meta-learning for quickly adapting model parameters to new short-history time series.
We show empirically that our proposed meta-learning method learns TSR with few data fast and outperforms the baselines in 9 of 12 experiments.
arXiv Detail & Related papers (2021-08-05T20:50:18Z) - Online learning of windmill time series using Long Short-term Cognitive
Networks [58.675240242609064]
The amount of data generated on windmill farms makes online learning the most viable strategy to follow.
We use Long Short-term Cognitive Networks (LSTCNs) to forecast windmill time series in online settings.
Our approach reported the lowest forecasting errors with respect to a simple RNN, a Long Short-term Memory, a Gated Recurrent Unit, and a Hidden Markov Model.
arXiv Detail & Related papers (2021-07-01T13:13:24Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - Learning summary features of time series for likelihood free inference [93.08098361687722]
We present a data-driven strategy for automatically learning summary features from time series data.
Our results indicate that learning summary features from data can compete and even outperform LFI methods based on hand-crafted values.
arXiv Detail & Related papers (2020-12-04T19:21:37Z) - Benchmarking Deep Learning Interpretability in Time Series Predictions [41.13847656750174]
Saliency methods are used extensively to highlight the importance of input features in model predictions.
We set out to extensively compare the performance of various saliency-based interpretability methods across diverse neural architectures.
arXiv Detail & Related papers (2020-10-26T22:07:53Z) - Change Point Detection in Time Series Data using Autoencoders with a
Time-Invariant Representation [69.34035527763916]
Change point detection (CPD) aims to locate abrupt property changes in time series data.
Recent CPD methods demonstrated the potential of using deep learning techniques, but often lack the ability to identify more subtle changes in the autocorrelation statistics of the signal.
We employ an autoencoder-based methodology with a novel loss function, through which the used autoencoders learn a partially time-invariant representation that is tailored for CPD.
arXiv Detail & Related papers (2020-08-21T15:03:21Z) - Time Series Data Augmentation for Deep Learning: A Survey [35.2161833151567]
We systematically review different data augmentation methods for time series data.
We empirically compare different data augmentation methods for different tasks including time series classification, anomaly detection, and forecasting.
arXiv Detail & Related papers (2020-02-27T23:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.