Detecting Images Generated by Deep Diffusion Models using their Local
Intrinsic Dimensionality
- URL: http://arxiv.org/abs/2307.02347v7
- Date: Thu, 28 Sep 2023 12:40:56 GMT
- Title: Detecting Images Generated by Deep Diffusion Models using their Local
Intrinsic Dimensionality
- Authors: Peter Lorenz, Ricard Durall and Janis Keuper
- Abstract summary: Diffusion models have been successfully applied for the visual synthesis of strikingly realistic appearing images.
This raises strong concerns about their potential for malicious purposes.
We propose using the lightweight multi Local Intrinsic Dimensionality (multiLID) for the automatic detection of synthetic images.
- Score: 8.968599131722023
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models recently have been successfully applied for the visual
synthesis of strikingly realistic appearing images. This raises strong concerns
about their potential for malicious purposes. In this paper, we propose using
the lightweight multi Local Intrinsic Dimensionality (multiLID), which has been
originally developed in context of the detection of adversarial examples, for
the automatic detection of synthetic images and the identification of the
according generator networks. In contrast to many existing detection
approaches, which often only work for GAN-generated images, the proposed method
provides close to perfect detection results in many realistic use cases.
Extensive experiments on known and newly created datasets demonstrate that the
proposed multiLID approach exhibits superiority in diffusion detection and
model identification. Since the empirical evaluations of recent publications on
the detection of generated images are often mainly focused on the
"LSUN-Bedroom" dataset, we further establish a comprehensive benchmark for the
detection of diffusion-generated images, including samples from several
diffusion models with different image sizes.
Related papers
- Contrasting Deepfakes Diffusion via Contrastive Learning and Global-Local Similarities [88.398085358514]
Contrastive Deepfake Embeddings (CoDE) is a novel embedding space specifically designed for deepfake detection.
CoDE is trained via contrastive learning by additionally enforcing global-local similarities.
arXiv Detail & Related papers (2024-07-29T18:00:10Z) - Detecting Out-Of-Distribution Earth Observation Images with Diffusion Models [2.1178416840822027]
We show that the reconstruction error of diffusion models can effectively serve as unsupervised out-of-distribution detectors for remote sensing images.
We introduce ODEED, a novel reconstruction-based scorer using the probability-flow ODE of diffusion models.
We aim to pave the way towards better use of generative models for anomaly detection in remote sensing.
arXiv Detail & Related papers (2024-04-19T07:07:36Z) - Diffusion Facial Forgery Detection [56.69763252655695]
This paper introduces DiFF, a comprehensive dataset dedicated to face-focused diffusion-generated images.
We conduct extensive experiments on the DiFF dataset via a human test and several representative forgery detection methods.
The results demonstrate that the binary detection accuracy of both human observers and automated detectors often falls below 30%.
arXiv Detail & Related papers (2024-01-29T03:20:19Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Projection Regret: Reducing Background Bias for Novelty Detection via
Diffusion Models [72.07462371883501]
We propose emphProjection Regret (PR), an efficient novelty detection method that mitigates the bias of non-semantic information.
PR computes the perceptual distance between the test image and its diffusion-based projection to detect abnormality.
Extensive experiments demonstrate that PR outperforms the prior art of generative-model-based novelty detection methods by a significant margin.
arXiv Detail & Related papers (2023-12-05T09:44:47Z) - Exposing the Fake: Effective Diffusion-Generated Images Detection [14.646957596560076]
This paper proposes a novel detection method called Stepwise Error for Diffusion-generated Image Detection (SeDID)
SeDID exploits the unique attributes of diffusion models, namely deterministic reverse and deterministic denoising errors.
Our work makes a pivotal contribution to distinguishing diffusion model-generated images, marking a significant step in the domain of artificial intelligence security.
arXiv Detail & Related papers (2023-07-12T16:16:37Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
Recent advancements in diffusion models have enabled the generation of realistic deepfakes from textual prompts in natural language.
We pioneer a systematic study on deepfake detection generated by state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-04-02T10:25:09Z) - Deep Image Fingerprint: Towards Low Budget Synthetic Image Detection and Model Lineage Analysis [8.777277201807351]
We develop a new detection method for images that are indistinguishable from real ones.
Our method can detect images from a known generative model and enable us to establish relationships between fine-tuned generative models.
Our approach achieves comparable performance to state-of-the-art pre-trained detection methods on images generated by Stable Diffusion and Midversa.
arXiv Detail & Related papers (2023-03-19T20:31:38Z) - DIRE for Diffusion-Generated Image Detection [128.95822613047298]
We propose a novel representation called DIffusion Reconstruction Error (DIRE)
DIRE measures the error between an input image and its reconstruction counterpart by a pre-trained diffusion model.
It provides a hint that DIRE can serve as a bridge to distinguish generated and real images.
arXiv Detail & Related papers (2023-03-16T13:15:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.