Finding differences in perspectives between designers and engineers to
develop trustworthy AI for autonomous cars
- URL: http://arxiv.org/abs/2307.03193v1
- Date: Sat, 1 Jul 2023 08:28:34 GMT
- Title: Finding differences in perspectives between designers and engineers to
develop trustworthy AI for autonomous cars
- Authors: Gustav Jonelid, K. R. Larsson
- Abstract summary: Different perspectives exist regarding developing trustworthy AI for autonomous cars.
This study sheds light on the differences in perspectives and provides recommendations to minimize such divergences.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the context of designing and implementing ethical Artificial Intelligence
(AI), varying perspectives exist regarding developing trustworthy AI for
autonomous cars. This study sheds light on the differences in perspectives and
provides recommendations to minimize such divergences. By exploring the diverse
viewpoints, we identify key factors contributing to the differences and propose
strategies to bridge the gaps. This study goes beyond the trolley problem to
visualize the complex challenges of trustworthy and ethical AI. Three pillars
of trustworthy AI have been defined: transparency, reliability, and safety.
This research contributes to the field of trustworthy AI for autonomous cars,
providing practical recommendations to enhance the development of AI systems
that prioritize both technological advancement and ethical principles.
Related papers
- Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
Key requirements for trustworthy AI can be translated into design choices for the components of empirical risk minimization.
We hope to provide actionable guidance for building AI systems that meet emerging standards for trustworthiness of AI.
arXiv Detail & Related papers (2024-10-25T07:53:32Z) - Trust in AI: Progress, Challenges, and Future Directions [6.724854390957174]
The increasing use of artificial intelligence (AI) systems in our daily life explains the significance of trust/distrust in AI from a user perspective.
Trust/distrust in AI plays the role of a regulator and could significantly control the level of this diffusion.
arXiv Detail & Related papers (2024-03-12T20:26:49Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
We introduce highlighted robustness challenges in the AI lifecycle and motivate AI maintenance by making analogies to car maintenance.
We propose an AI model inspection framework to detect and mitigate robustness risks.
Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle.
arXiv Detail & Related papers (2023-01-08T15:02:38Z) - Never trust, always verify : a roadmap for Trustworthy AI? [12.031113181911627]
We examine trust in the context of AI-based systems to understand what it means for an AI system to be trustworthy.
We suggest a trust (resp. zero-trust) model for AI and suggest a set of properties that should be satisfied to ensure the trustworthiness of AI systems.
arXiv Detail & Related papers (2022-06-23T21:13:10Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - Trustworthy AI: From Principles to Practices [44.67324097900778]
Many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc.
In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems.
To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems.
arXiv Detail & Related papers (2021-10-04T03:20:39Z) - Rebuilding Trust: Queer in AI Approach to Artificial Intelligence Risk
Management [0.0]
Trustworthy AI has become an important topic because trust in AI systems and their creators has been lost, or was never present in the first place.
We argue that any AI development, deployment, and monitoring framework that aspires to trust must incorporate both feminist, non-exploitative design principles.
arXiv Detail & Related papers (2021-09-21T21:22:58Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
We focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being.
For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems.
arXiv Detail & Related papers (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.