Online Network Source Optimization with Graph-Kernel MAB
- URL: http://arxiv.org/abs/2307.03641v1
- Date: Fri, 7 Jul 2023 15:03:42 GMT
- Title: Online Network Source Optimization with Graph-Kernel MAB
- Authors: Laura Toni, Pascal Frossard
- Abstract summary: We propose Grab-UCB, a graph- kernel multi-arms bandit algorithm to learn online the optimal source placement in large scale networks.
We describe the network processes with an adaptive graph dictionary model, which typically leads to sparse spectral representations.
We derive the performance guarantees that depend on network parameters, which further influence the learning curve of the sequential decision strategy.
- Score: 62.6067511147939
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose Grab-UCB, a graph-kernel multi-arms bandit algorithm to learn
online the optimal source placement in large scale networks, such that the
reward obtained from a priori unknown network processes is maximized. The
uncertainty calls for online learning, which suffers however from the curse of
dimensionality. To achieve sample efficiency, we describe the network processes
with an adaptive graph dictionary model, which typically leads to sparse
spectral representations. This enables a data-efficient learning framework,
whose learning rate scales with the dimension of the spectral representation
model instead of the one of the network. We then propose Grab-UCB, an online
sequential decision strategy that learns the parameters of the spectral
representation while optimizing the action strategy. We derive the performance
guarantees that depend on network parameters, which further influence the
learning curve of the sequential decision strategy We introduce a
computationally simplified solving method, Grab-arm-Light, an algorithm that
walks along the edges of the polytope representing the objective function.
Simulations results show that the proposed online learning algorithm
outperforms baseline offline methods that typically separate the learning phase
from the testing one. The results confirm the theoretical findings, and further
highlight the gain of the proposed online learning strategy in terms of
cumulative regret, sample efficiency and computational complexity.
Related papers
- Learning How to Propagate Messages in Graph Neural Networks [55.2083896686782]
This paper studies the problem of learning message propagation strategies for graph neural networks (GNNs)
We introduce the optimal propagation steps as latent variables to help find the maximum-likelihood estimation of the GNN parameters.
Our proposed framework can effectively learn personalized and interpretable propagate strategies of messages in GNNs.
arXiv Detail & Related papers (2023-10-01T15:09:59Z) - Sensitivity-Aware Mixed-Precision Quantization and Width Optimization of Deep Neural Networks Through Cluster-Based Tree-Structured Parzen Estimation [4.748931281307333]
We introduce an innovative search mechanism for automatically selecting the best bit-width and layer-width for individual neural network layers.
This leads to a marked enhancement in deep neural network efficiency.
arXiv Detail & Related papers (2023-08-12T00:16:51Z) - Contrastive UCB: Provably Efficient Contrastive Self-Supervised Learning in Online Reinforcement Learning [92.18524491615548]
Contrastive self-supervised learning has been successfully integrated into the practice of (deep) reinforcement learning (RL)
We study how RL can be empowered by contrastive learning in a class of Markov decision processes (MDPs) and Markov games (MGs) with low-rank transitions.
Under the online setting, we propose novel upper confidence bound (UCB)-type algorithms that incorporate such a contrastive loss with online RL algorithms for MDPs or MGs.
arXiv Detail & Related papers (2022-07-29T17:29:08Z) - Provably Efficient Reinforcement Learning for Online Adaptive Influence
Maximization [53.11458949694947]
We consider an adaptive version of content-dependent online influence problem where seed nodes are sequentially activated based on realtime feedback.
Our algorithm maintains a network model estimate and selects seed adaptively, exploring the social network while improving the optimal policy optimistically.
arXiv Detail & Related papers (2022-06-29T18:17:28Z) - TSO: Curriculum Generation using continuous optimization [0.0]
We present a simple and efficient technique based on continuous optimization.
An encoder network maps/embeds training sequence into continuous space.
A predictor network uses the continuous representation of a strategy as input and predicts the accuracy for fixed network architecture.
arXiv Detail & Related papers (2021-06-16T06:32:21Z) - A Heuristically Assisted Deep Reinforcement Learning Approach for
Network Slice Placement [0.7885276250519428]
We introduce a hybrid placement solution based on Deep Reinforcement Learning (DRL) and a dedicated optimization based on the Power of Two Choices principle.
The proposed Heuristically-Assisted DRL (HA-DRL) allows to accelerate the learning process and gain in resource usage when compared against other state-of-the-art approaches.
arXiv Detail & Related papers (2021-05-14T10:04:17Z) - Analytically Tractable Inference in Deep Neural Networks [0.0]
Tractable Approximate Inference (TAGI) algorithm was shown to be a viable and scalable alternative to backpropagation for shallow fully-connected neural networks.
We are demonstrating how TAGI matches or exceeds the performance of backpropagation, for training classic deep neural network architectures.
arXiv Detail & Related papers (2021-03-09T14:51:34Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
We train a graph convolutional network to fit the performance of sampled sub-networks.
With this strategy, we achieve a higher rank correlation coefficient in the selected set of candidates.
arXiv Detail & Related papers (2020-04-17T19:12:39Z) - RNN-based Online Learning: An Efficient First-Order Optimization
Algorithm with a Convergence Guarantee [0.0]
We introduce an efficient first-order training algorithm that theoretically guarantees to converge to the optimum network parameters.
Our algorithm is truly online such that it does not make any assumption on the learning environment to guarantee convergence.
arXiv Detail & Related papers (2020-03-07T16:31:22Z) - Subset Sampling For Progressive Neural Network Learning [106.12874293597754]
Progressive Neural Network Learning is a class of algorithms that incrementally construct the network's topology and optimize its parameters based on the training data.
We propose to speed up this process by exploiting subsets of training data at each incremental training step.
Experimental results in object, scene and face recognition problems demonstrate that the proposed approach speeds up the optimization procedure considerably.
arXiv Detail & Related papers (2020-02-17T18:57:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.