Fooling Contrastive Language-Image Pre-trained Models with CLIPMasterPrints
- URL: http://arxiv.org/abs/2307.03798v3
- Date: Tue, 16 Apr 2024 20:57:35 GMT
- Title: Fooling Contrastive Language-Image Pre-trained Models with CLIPMasterPrints
- Authors: Matthias Freiberger, Peter Kun, Christian Igel, Anders Sundnes Løvlie, Sebastian Risi,
- Abstract summary: We show that despite their versatility, CLIP models are vulnerable to what we refer to as fooling master images.
Fooling master images are capable of maximizing the confidence score of a CLIP model for a significant number of widely varying prompts.
We demonstrate how fooling master images for CLIPMasterPrints can be mined using gradient descent, projected descent, or blackbox optimization.
- Score: 15.643898659673036
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Models leveraging both visual and textual data such as Contrastive Language-Image Pre-training (CLIP), are the backbone of many recent advances in artificial intelligence. In this work, we show that despite their versatility, such models are vulnerable to what we refer to as fooling master images. Fooling master images are capable of maximizing the confidence score of a CLIP model for a significant number of widely varying prompts, while being either unrecognizable or unrelated to the attacked prompts for humans. The existence of such images is problematic as it could be used by bad actors to maliciously interfere with CLIP-trained image retrieval models in production with comparably small effort as a single image can attack many different prompts. We demonstrate how fooling master images for CLIP (CLIPMasterPrints) can be mined using stochastic gradient descent, projected gradient descent, or blackbox optimization. Contrary to many common adversarial attacks, the blackbox optimization approach allows us to mine CLIPMasterPrints even when the weights of the model are not accessible. We investigate the properties of the mined images, and find that images trained on a small number of image captions generalize to a much larger number of semantically related captions. We evaluate possible mitigation strategies, where we increase the robustness of the model and introduce an approach to automatically detect CLIPMasterPrints to sanitize the input of vulnerable models. Finally, we find that vulnerability to CLIPMasterPrints is related to a modality gap in contrastive pre-trained multi-modal networks. Code available at https://github.com/matfrei/CLIPMasterPrints.
Related papers
- Diffusion Feedback Helps CLIP See Better [40.125318318373715]
Contrastive Language-Image Pre-training (CLIP) excels at abstracting open-world representations across domains and modalities.
CLIP has severe visual shortcomings, such as which can hardly distinguish orientation, quantity, color, structure.
We present a post-training approach for CLIP models, which largely overcomes its visual shortcomings via a self-supervised diffusion process.
arXiv Detail & Related papers (2024-07-29T17:00:09Z) - Multimodal Unlearnable Examples: Protecting Data against Multimodal Contrastive Learning [53.766434746801366]
Multimodal contrastive learning (MCL) has shown remarkable advances in zero-shot classification by learning from millions of image-caption pairs crawled from the Internet.
Hackers may unauthorizedly exploit image-text data for model training, potentially including personal and privacy-sensitive information.
Recent works propose generating unlearnable examples by adding imperceptible perturbations to training images to build shortcuts for protection.
We propose Multi-step Error Minimization (MEM), a novel optimization process for generating multimodal unlearnable examples.
arXiv Detail & Related papers (2024-07-23T09:00:52Z) - Enhancing Vision-Language Model with Unmasked Token Alignment [37.12838142681491]
This paper introduces Unmasked Token Alignment (UTA), a method that leverages existing CLIP models to further enhance its vision-language representations.
UTA trains a Vision Transformer (ViT) by aligning unmasked visual tokens to the corresponding image tokens from a frozen CLIP vision encoder, which automatically aligns the ViT model with the CLIP text encoder.
arXiv Detail & Related papers (2024-05-29T11:48:17Z) - Match me if you can: Semi-Supervised Semantic Correspondence Learning with Unpaired Images [76.47980643420375]
This paper builds on the hypothesis that there is an inherent data-hungry matter in learning semantic correspondences.
We demonstrate a simple machine annotator reliably enriches paired key points via machine supervision.
Our models surpass current state-of-the-art models on semantic correspondence learning benchmarks like SPair-71k, PF-PASCAL, and PF-WILLOW.
arXiv Detail & Related papers (2023-11-30T13:22:15Z) - BadCLIP: Trigger-Aware Prompt Learning for Backdoor Attacks on CLIP [55.33331463515103]
BadCLIP is built on a novel and effective mechanism in backdoor attacks on CLIP.
It consists of a learnable trigger applied to images and a trigger-aware context generator, such that the trigger can change text features via trigger-aware prompts.
arXiv Detail & Related papers (2023-11-26T14:24:13Z) - CleanCLIP: Mitigating Data Poisoning Attacks in Multimodal Contrastive
Learning [63.72975421109622]
CleanCLIP is a finetuning framework that weakens the learned spurious associations introduced by backdoor attacks.
CleanCLIP maintains model performance on benign examples while erasing a range of backdoor attacks on multimodal contrastive learning.
arXiv Detail & Related papers (2023-03-06T17:48:32Z) - CLIPPO: Image-and-Language Understanding from Pixels Only [36.433133689137875]
We propose a pure pixel-based model to perform image, text, and multimodal tasks.
Our model is trained with contrastive loss alone, so we call it CLIP-Pixels Only (CLIPPO)
When trained jointly via image-text contrastive learning and next-sentence contrastive learning, CLIPPO can perform well on natural language understanding tasks.
arXiv Detail & Related papers (2022-12-15T18:52:08Z) - No Token Left Behind: Explainability-Aided Image Classification and
Generation [79.4957965474334]
We present a novel explainability-based approach, which adds a loss term to ensure that CLIP focuses on all relevant semantic parts of the input.
Our method yields an improvement in the recognition rate, without additional training or fine-tuning.
arXiv Detail & Related papers (2022-04-11T07:16:39Z) - DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting [91.56988987393483]
We present a new framework for dense prediction by implicitly and explicitly leveraging the pre-trained knowledge from CLIP.
Specifically, we convert the original image-text matching problem in CLIP to a pixel-text matching problem and use the pixel-text score maps to guide the learning of dense prediction models.
Our method is model-agnostic, which can be applied to arbitrary dense prediction systems and various pre-trained visual backbones.
arXiv Detail & Related papers (2021-12-02T18:59:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.