Controlling Chaotic Maps using Next-Generation Reservoir Computing
- URL: http://arxiv.org/abs/2307.03813v2
- Date: Fri, 2 Feb 2024 06:04:46 GMT
- Title: Controlling Chaotic Maps using Next-Generation Reservoir Computing
- Authors: Robert M. Kent and Wendson A. S. Barbosa and Daniel J. Gauthier
- Abstract summary: We combine nonlinear system control techniques with next-generation reservoir computing, a best-in-class machine learning approach for predicting the behavior of dynamical systems.
We demonstrate the performance of the controller in a series of control tasks for the chaotic H'enon map.
We show that our controller succeeds in these tasks, requires only 10 data points for training, can control the system to a desired trajectory in a single iteration, and is robust to noise and modeling error.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we combine nonlinear system control techniques with
next-generation reservoir computing, a best-in-class machine learning approach
for predicting the behavior of dynamical systems. We demonstrate the
performance of the controller in a series of control tasks for the chaotic
H\'enon map, including controlling the system between unstable fixed-points,
stabilizing the system to higher order periodic orbits, and to an arbitrary
desired state. We show that our controller succeeds in these tasks, requires
only 10 data points for training, can control the system to a desired
trajectory in a single iteration, and is robust to noise and modeling error.
Related papers
- Iterative Learning Control of Fast, Nonlinear, Oscillatory Dynamics (Preprint) [0.0]
nonlinear, chaotic, and are often too fast for active control schemes.
We develop an alternative active controls system using an iterative, trajectory-optimization and parameter-tuning approach.
We demonstrate that the controller is robust to missing information and uncontrollable parameters as long as certain requirements are met.
arXiv Detail & Related papers (2024-05-30T13:27:17Z) - Model-free tracking control of complex dynamical trajectories with
machine learning [0.2356141385409842]
We develop a model-free, machine-learning framework to control a two-arm robotic manipulator.
We demonstrate the effectiveness of the control framework using a variety of periodic and chaotic signals.
arXiv Detail & Related papers (2023-09-20T17:10:10Z) - Controlling dynamical systems to complex target states using machine
learning: next-generation vs. classical reservoir computing [68.8204255655161]
Controlling nonlinear dynamical systems using machine learning allows to drive systems into simple behavior like periodicity but also to more complex arbitrary dynamics.
We show first that classical reservoir computing excels at this task.
In a next step, we compare those results based on different amounts of training data to an alternative setup, where next-generation reservoir computing is used instead.
It turns out that while delivering comparable performance for usual amounts of training data, next-generation RC significantly outperforms in situations where only very limited data is available.
arXiv Detail & Related papers (2023-07-14T07:05:17Z) - A Deep Learning Technique to Control the Non-linear Dynamics of a
Gravitational-wave Interferometer [0.0]
We developed a deep learning technique that successfully solves a non-linear dynamic control problem.
We applied this technique to a crucial non-linear control problem that arises in the operation of the LIGO system.
We also developed a computationally efficient model that can run in real time at high sampling rate on a single modern CPU core.
arXiv Detail & Related papers (2023-02-15T19:47:56Z) - LQGNet: Hybrid Model-Based and Data-Driven Linear Quadratic Stochastic
Control [24.413595920205907]
quadratic control deals with finding an optimal control signal for a dynamical system in a setting with uncertainty.
LQGNet is a controller that leverages data to operate under partially known dynamics.
We show that LQGNet outperforms classic control by overcoming mismatched SS models.
arXiv Detail & Related papers (2022-10-23T17:59:51Z) - Deep Koopman Operator with Control for Nonlinear Systems [44.472875714432504]
We propose an end-to-end deep learning framework to learn the Koopman embedding function and Koopman Operator.
We first parameterize the embedding function and Koopman Operator with the neural network and train them end-to-end with the K-steps loss function.
We then design an auxiliary control network to encode the nonlinear state-dependent control term to model the nonlinearity in control input.
arXiv Detail & Related papers (2022-02-16T11:40:36Z) - Finite-time System Identification and Adaptive Control in Autoregressive
Exogenous Systems [79.67879934935661]
We study the problem of system identification and adaptive control of unknown ARX systems.
We provide finite-time learning guarantees for the ARX systems under both open-loop and closed-loop data collection.
arXiv Detail & Related papers (2021-08-26T18:00:00Z) - Controlling nonlinear dynamical systems into arbitrary states using
machine learning [77.34726150561087]
We propose a novel and fully data driven control scheme which relies on machine learning (ML)
Exploiting recently developed ML-based prediction capabilities of complex systems, we demonstrate that nonlinear systems can be forced to stay in arbitrary dynamical target states coming from any initial state.
Having this highly flexible control scheme with little demands on the amount of required data on hand, we briefly discuss possible applications that range from engineering to medicine.
arXiv Detail & Related papers (2021-02-23T16:58:26Z) - Online Reinforcement Learning Control by Direct Heuristic Dynamic
Programming: from Time-Driven to Event-Driven [80.94390916562179]
Time-driven learning refers to the machine learning method that updates parameters in a prediction model continuously as new data arrives.
It is desirable to prevent the time-driven dHDP from updating due to insignificant system event such as noise.
We show how the event-driven dHDP algorithm works in comparison to the original time-driven dHDP.
arXiv Detail & Related papers (2020-06-16T05:51:25Z) - Logarithmic Regret Bound in Partially Observable Linear Dynamical
Systems [91.43582419264763]
We study the problem of system identification and adaptive control in partially observable linear dynamical systems.
We present the first model estimation method with finite-time guarantees in both open and closed-loop system identification.
We show that AdaptOn is the first algorithm that achieves $textpolylogleft(Tright)$ regret in adaptive control of unknown partially observable linear dynamical systems.
arXiv Detail & Related papers (2020-03-25T06:00:33Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.