Feature selection simultaneously preserving both class and cluster
structures
- URL: http://arxiv.org/abs/2307.03902v1
- Date: Sat, 8 Jul 2023 04:49:51 GMT
- Title: Feature selection simultaneously preserving both class and cluster
structures
- Authors: Suchismita Das and Nikhil R. Pal
- Abstract summary: We propose a neural network-based feature selection method that focuses both on class discrimination and structure preservation in an integrated manner.
Based on the results of the experiments, we may claim that the proposed feature/band selection can select a subset of features that is good for both classification and clustering.
- Score: 5.5612170847190665
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When a data set has significant differences in its class and cluster
structure, selecting features aiming only at the discrimination of classes
would lead to poor clustering performance, and similarly, feature selection
aiming only at preserving cluster structures would lead to poor classification
performance. To the best of our knowledge, a feature selection method that
simultaneously considers class discrimination and cluster structure
preservation is not available in the literature. In this paper, we have tried
to bridge this gap by proposing a neural network-based feature selection method
that focuses both on class discrimination and structure preservation in an
integrated manner. In addition to assessing typical classification problems, we
have investigated its effectiveness on band selection in hyperspectral images.
Based on the results of the experiments, we may claim that the proposed
feature/band selection can select a subset of features that is good for both
classification and clustering.
Related papers
- Collaborative Feature-Logits Contrastive Learning for Open-Set Semi-Supervised Object Detection [75.02249869573994]
In open-set scenarios, the unlabeled dataset contains both in-distribution (ID) classes and out-of-distribution (OOD) classes.
Applying semi-supervised detectors in such settings can lead to misclassifying OOD class as ID classes.
We propose a simple yet effective method, termed Collaborative Feature-Logits Detector (CFL-Detector)
arXiv Detail & Related papers (2024-11-20T02:57:35Z) - Greedy feature selection: Classifier-dependent feature selection via
greedy methods [2.4374097382908477]
The purpose of this study is to introduce a new approach to feature ranking for classification tasks, called in what follows greedy feature selection.
The benefits of such scheme are investigated theoretically in terms of model capacity indicators, such as the Vapnik-Chervonenkis (VC) dimension or the kernel alignment.
arXiv Detail & Related papers (2024-03-08T08:12:05Z) - Using Decision Trees for Interpretable Supervised Clustering [0.0]
supervised clustering aims at forming clusters of labelled data with high probability densities.
We are particularly interested in finding clusters of data of a given class and describing the clusters with the set of comprehensive rules.
arXiv Detail & Related papers (2023-07-16T17:12:45Z) - DiGeo: Discriminative Geometry-Aware Learning for Generalized Few-Shot
Object Detection [39.937724871284665]
Generalized few-shot object detection aims to achieve precise detection on both base classes with abundant annotations and novel classes with limited training data.
Existing approaches enhance few-shot generalization with the sacrifice of base-class performance.
We propose a new training framework, DiGeo, to learn Geometry-aware features of inter-class separation and intra-class compactness.
arXiv Detail & Related papers (2023-03-16T22:37:09Z) - Anomaly Detection using Ensemble Classification and Evidence Theory [62.997667081978825]
We present a novel approach for novel detection using ensemble classification and evidence theory.
A pool selection strategy is presented to build a solid ensemble classifier.
We use uncertainty for the anomaly detection approach.
arXiv Detail & Related papers (2022-12-23T00:50:41Z) - Leveraging Ensembles and Self-Supervised Learning for Fully-Unsupervised
Person Re-Identification and Text Authorship Attribution [77.85461690214551]
Learning from fully-unlabeled data is challenging in Multimedia Forensics problems, such as Person Re-Identification and Text Authorship Attribution.
Recent self-supervised learning methods have shown to be effective when dealing with fully-unlabeled data in cases where the underlying classes have significant semantic differences.
We propose a strategy to tackle Person Re-Identification and Text Authorship Attribution by enabling learning from unlabeled data even when samples from different classes are not prominently diverse.
arXiv Detail & Related papers (2022-02-07T13:08:11Z) - CAC: A Clustering Based Framework for Classification [20.372627144885158]
We design a simple, efficient, and generic framework called Classification Aware Clustering (CAC)
Our experiments on synthetic and real benchmark datasets demonstrate the efficacy of CAC over previous methods for combined clustering and classification.
arXiv Detail & Related papers (2021-02-23T18:59:39Z) - Binary Classification from Multiple Unlabeled Datasets via Surrogate Set
Classification [94.55805516167369]
We propose a new approach for binary classification from m U-sets for $mge2$.
Our key idea is to consider an auxiliary classification task called surrogate set classification (SSC)
arXiv Detail & Related papers (2021-02-01T07:36:38Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Learning Class Regularized Features for Action Recognition [68.90994813947405]
We introduce a novel method named Class Regularization that performs class-based regularization of layer activations.
We show that using Class Regularization blocks in state-of-the-art CNN architectures for action recognition leads to systematic improvement gains of 1.8%, 1.2% and 1.4% on the Kinetics, UCF-101 and HMDB-51 datasets, respectively.
arXiv Detail & Related papers (2020-02-07T07:27:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.