Properly Learning Decision Trees with Queries Is NP-Hard
- URL: http://arxiv.org/abs/2307.04093v1
- Date: Sun, 9 Jul 2023 04:29:43 GMT
- Title: Properly Learning Decision Trees with Queries Is NP-Hard
- Authors: Caleb Koch and Carmen Strassle and Li-Yang Tan
- Abstract summary: We prove that it is NP-hard to properly PAC learn decision trees with queries.
We simplify and strengthen the best known lower bounds for a different problem of Decision Tree Minimization.
- Score: 5.117810469621253
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We prove that it is NP-hard to properly PAC learn decision trees with
queries, resolving a longstanding open problem in learning theory (Bshouty
1993; Guijarro-Lavin-Raghavan 1999; Mehta-Raghavan 2002; Feldman 2016). While
there has been a long line of work, dating back to (Pitt-Valiant 1988),
establishing the hardness of properly learning decision trees from random
examples, the more challenging setting of query learners necessitates different
techniques and there were no previous lower bounds. En route to our main
result, we simplify and strengthen the best known lower bounds for a different
problem of Decision Tree Minimization (Zantema-Bodlaender 2000; Sieling 2003).
On a technical level, we introduce the notion of hardness distillation, which
we study for decision tree complexity but can be considered for any complexity
measure: for a function that requires large decision trees, we give a general
method for identifying a small set of inputs that is responsible for its
complexity. Our technique even rules out query learners that are allowed
constant error. This contrasts with existing lower bounds for the setting of
random examples which only hold for inverse-polynomial error.
Our result, taken together with a recent almost-polynomial time query
algorithm for properly learning decision trees under the uniform distribution
(Blanc-Lange-Qiao-Tan 2022), demonstrates the dramatic impact of distributional
assumptions on the problem.
Related papers
- Learning accurate and interpretable decision trees [27.203303726977616]
We develop approaches to design decision tree learning algorithms given repeated access to data from the same domain.
We study the sample complexity of tuning prior parameters in Bayesian decision tree learning, and extend our results to decision tree regression.
We also study the interpretability of the learned decision trees and introduce a data-driven approach for optimizing the explainability versus accuracy trade-off using decision trees.
arXiv Detail & Related papers (2024-05-24T20:10:10Z) - Tight Guarantees for Interactive Decision Making with the
Decision-Estimation Coefficient [51.37720227675476]
We introduce a new variant of the Decision-Estimation Coefficient, and use it to derive new lower bounds that improve upon prior work on three fronts.
We provide upper bounds on regret that scale with the same quantity, thereby closing all but one of the gaps between upper and lower bounds in Foster et al.
Our results apply to both the regret framework and PAC framework, and make use of several new analysis and algorithm design techniques that we anticipate will find broader use.
arXiv Detail & Related papers (2023-01-19T18:24:08Z) - Improved Quantum Query Upper Bounds Based on Classical Decision Trees [0.0]
Given a classical query algorithm as a decision tree, when does there exist a quantum query algorithm with a speed-up over the classical one?
We provide a general construction based on the structure of the underlying decision tree, and prove that this can give us an up-to-quadratic quantum speed-up.
arXiv Detail & Related papers (2022-03-06T14:04:06Z) - Provable Reinforcement Learning with a Short-Term Memory [68.00677878812908]
We study a new subclass of POMDPs, whose latent states can be decoded by the most recent history of a short length $m$.
In particular, in the rich-observation setting, we develop new algorithms using a novel "moment matching" approach with a sample complexity that scales exponentially.
Our results show that a short-term memory suffices for reinforcement learning in these environments.
arXiv Detail & Related papers (2022-02-08T16:39:57Z) - Trading Complexity for Sparsity in Random Forest Explanations [20.87501058448681]
We introduce majoritary reasons which are prime implicants of a strict majority of decision trees.
Experiments conducted on various datasets reveal the existence of a trade-off between runtime complexity and sparsity.
arXiv Detail & Related papers (2021-08-11T15:19:46Z) - Sample Complexity of Tree Search Configuration: Cutting Planes and
Beyond [98.92725321081994]
State-of-the-art solvers integrate a myriad of cutting-plane techniques to speed up the underlying tree-search algorithm.
We prove the first guarantees for learning high-performing cut-selection policies tailored to the instance distribution.
arXiv Detail & Related papers (2021-06-08T00:57:59Z) - Convex Polytope Trees [57.56078843831244]
convex polytope trees (CPT) are proposed to expand the family of decision trees by an interpretable generalization of their decision boundary.
We develop a greedy method to efficiently construct CPT and scalable end-to-end training algorithms for the tree parameters when the tree structure is given.
arXiv Detail & Related papers (2020-10-21T19:38:57Z) - Instance-Dependent Complexity of Contextual Bandits and Reinforcement
Learning: A Disagreement-Based Perspective [104.67295710363679]
In the classical multi-armed bandit problem, instance-dependent algorithms attain improved performance on "easy" problems with a gap between the best and second-best arm.
We introduce a family of complexity measures that are both sufficient and necessary to obtain instance-dependent regret bounds.
We then introduce new oracle-efficient algorithms which adapt to the gap whenever possible, while also attaining the minimax rate in the worst case.
arXiv Detail & Related papers (2020-10-07T01:33:06Z) - Robust Estimation of Tree Structured Ising Models [20.224160348675422]
We consider the task of learning Ising models when the signs of different random variables are flipped independently with possibly unequal, unknown probabilities.
We first prove that this problem is unidentifiable, however, this unidentifiability is limited to a small equivalence class of trees formed by leaf nodes exchanging positions with their neighbors.
arXiv Detail & Related papers (2020-06-10T01:32:45Z) - Parameterizing Branch-and-Bound Search Trees to Learn Branching Policies [76.83991682238666]
Branch and Bound (B&B) is the exact tree search method typically used to solve Mixed-Integer Linear Programming problems (MILPs)
We propose a novel imitation learning framework, and introduce new input features and architectures to represent branching.
arXiv Detail & Related papers (2020-02-12T17:43:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.