Improving Heterogeneous Graph Learning with Weighted Mixed-Curvature
Product Manifold
- URL: http://arxiv.org/abs/2307.04514v1
- Date: Mon, 10 Jul 2023 12:20:50 GMT
- Title: Improving Heterogeneous Graph Learning with Weighted Mixed-Curvature
Product Manifold
- Authors: Tuc Nguyen-Van, Dung D. Le, The-Anh Ta
- Abstract summary: In graph representation learning, the complex geometric structure of the input graph, e.g. hidden relations among nodes, is well captured in embedding space.
Standard Euclidean embedding spaces have a limited capacity in representing graphs of varying structures.
A promising candidate for the faithful embedding of data with varying structure is product manifold embedding spaces.
- Score: 4.640835690336652
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In graph representation learning, it is important that the complex geometric
structure of the input graph, e.g. hidden relations among nodes, is well
captured in embedding space. However, standard Euclidean embedding spaces have
a limited capacity in representing graphs of varying structures. A promising
candidate for the faithful embedding of data with varying structure is product
manifolds of component spaces of different geometries (spherical, hyperbolic,
or euclidean). In this paper, we take a closer look at the structure of product
manifold embedding spaces and argue that each component space in a product
contributes differently to expressing structures in the input graph, hence
should be weighted accordingly. This is different from previous works which
consider the roles of different components equally. We then propose
WEIGHTED-PM, a data-driven method for learning embedding of heterogeneous
graphs in weighted product manifolds. Our method utilizes the topological
information of the input graph to automatically determine the weight of each
component in product spaces. Extensive experiments on synthetic and real-world
graph datasets demonstrate that WEIGHTED-PM is capable of learning better graph
representations with lower geometric distortion from input data, and performs
better on multiple downstream tasks, such as word similarity learning, top-$k$
recommendation, and knowledge graph embedding.
Related papers
- Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
The reliability of graph embeddings depends on how much the geometry of the continuous space matches the graph structure.
We introduce a new class of manifold, named soft manifold, that can solve this situation.
Using soft manifold for graph embedding, we can provide continuous spaces to pursue any task in data analysis over complex datasets.
arXiv Detail & Related papers (2023-11-29T12:48:33Z) - Structure-free Graph Condensation: From Large-scale Graphs to Condensed
Graph-free Data [91.27527985415007]
Existing graph condensation methods rely on the joint optimization of nodes and structures in the condensed graph.
We advocate a new Structure-Free Graph Condensation paradigm, named SFGC, to distill a large-scale graph into a small-scale graph node set.
arXiv Detail & Related papers (2023-06-05T07:53:52Z) - Bures-Wasserstein Means of Graphs [60.42414991820453]
We propose a novel framework for defining a graph mean via embeddings in the space of smooth graph signal distributions.
By finding a mean in this embedding space, we can recover a mean graph that preserves structural information.
We establish the existence and uniqueness of the novel graph mean, and provide an iterative algorithm for computing it.
arXiv Detail & Related papers (2023-05-31T11:04:53Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
Contrastive learning has emerged as a premier method for learning representations with or without supervision.
Recent studies have shown its utility in graph representation learning for pre-training.
We propose a set of well-motivated graph transformation operations to provide a bank of candidates when constructing augmentations for a graph contrastive objective.
arXiv Detail & Related papers (2023-02-06T16:26:29Z) - Latent Graph Inference using Product Manifolds [0.0]
We generalize the discrete Differentiable Graph Module (dDGM) for latent graph learning.
Our novel approach is tested on a wide range of datasets, and outperforms the original dDGM model.
arXiv Detail & Related papers (2022-11-26T22:13:06Z) - Geometry Contrastive Learning on Heterogeneous Graphs [50.58523799455101]
This paper proposes a novel self-supervised learning method, termed as Geometry Contrastive Learning (GCL)
GCL views a heterogeneous graph from Euclidean and hyperbolic perspective simultaneously, aiming to make a strong merger of the ability of modeling rich semantics and complex structures.
Extensive experiments on four benchmarks data sets show that the proposed approach outperforms the strong baselines.
arXiv Detail & Related papers (2022-06-25T03:54:53Z) - Heterogeneous manifolds for curvature-aware graph embedding [6.3351090376024155]
Graph embeddings are used in a broad range of Graph ML applications.
The quality of such embeddings crucially depends on whether the geometry of the space matches that of the graph.
arXiv Detail & Related papers (2022-02-02T18:18:35Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
This paper proposes a novel Structure-Aware Heterogeneous Graph Neural Network (SHGNN) to address the above limitations.
We first utilize a feature propagation module to capture the local structure information of intermediate nodes in the meta-path.
Next, we use a tree-attention aggregator to incorporate the graph structure information into the aggregation module on the meta-path.
Finally, we leverage a meta-path aggregator to fuse the information aggregated from different meta-paths.
arXiv Detail & Related papers (2021-12-12T14:18:18Z) - Hermitian Symmetric Spaces for Graph Embeddings [0.0]
We learn continuous representations of graphs in spaces of symmetric matrices over C.
These spaces offer a rich geometry that simultaneously admits hyperbolic and Euclidean subspaces.
The proposed models are able to automatically adapt to very dissimilar arrangements without any apriori estimates of graph features.
arXiv Detail & Related papers (2021-05-11T18:14:52Z) - Graph Geometry Interaction Learning [41.10468385822182]
We develop a novel Geometry Interaction Learning (GIL) method for graphs, a well-suited and efficient alternative for learning abundant geometric properties in graph.
Our method endows each node the freedom to determine the importance of each geometry space via a flexible dual feature interaction learning and probability assembling mechanism.
Promising experimental results are presented for five benchmark datasets on node classification and link prediction tasks.
arXiv Detail & Related papers (2020-10-23T02:40:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.