Bridging MDE and AI: A Systematic Review of Domain-Specific Languages and Model-Driven Practices in AI Software Systems Engineering
- URL: http://arxiv.org/abs/2307.04599v2
- Date: Mon, 6 May 2024 09:19:07 GMT
- Title: Bridging MDE and AI: A Systematic Review of Domain-Specific Languages and Model-Driven Practices in AI Software Systems Engineering
- Authors: Simon Raedler, Luca Berardinelli, Karolin Winter, Abbas Rahimi, Stefanie Rinderle-Ma,
- Abstract summary: This study aims to investigate the existing model-driven approaches relying on DSL in support of the engineering of AI software systems.
The use of MDE for AI is still in its early stages, and there is no single tool or method that is widely used.
- Score: 1.4853133497896698
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Background:Technical systems are growing in complexity with more components and functions across various disciplines. Model-Driven Engineering (MDE) helps manage this complexity by using models as key artifacts. Domain-Specific Languages (DSL) supported by MDE facilitate modeling. As data generation in product development increases, there's a growing demand for AI algorithms, which can be challenging to implement. Integrating AI algorithms with DSL and MDE can streamline this process. Objective:This study aims to investigate the existing model-driven approaches relying on DSL in support of the engineering of AI software systems to sharpen future research further and define the current state of the art. Method:We conducted a Systemic Literature Review (SLR), collecting papers from five major databases resulting in 1335 candidate studies, eventually retaining 18 primary studies. Each primary study will be evaluated and discussed with respect to the adoption of MDE principles and practices and the phases of AI development support aligned with the stages of the CRISP-DM methodology. Results:The study's findings show that language workbenches are of paramount importance in dealing with all aspects of modeling language development and are leveraged to define DSL explicitly addressing AI concerns. The most prominent AI-related concerns are training and modeling of the AI algorithm, while minor emphasis is given to the time-consuming preparation of the data. Early project phases that support interdisciplinary communication of requirements, e.g., CRISP-DM Business Understanding phase, are rarely reflected. Conclusion:The study found that the use of MDE for AI is still in its early stages, and there is no single tool or method that is widely used. Additionally, current approaches tend to focus on specific stages of development rather than providing support for the entire development process.
Related papers
- Collaborative AI in Sentiment Analysis: System Architecture, Data Prediction and Deployment Strategies [3.3374611485861116]
Large language model (LLM) based artificial intelligence technologies have been a game-changer, particularly in sentiment analysis.
However, integrating diverse AI models for processing complex multimodal data and the associated high costs of feature extraction presents significant challenges.
This study introduces a collaborative AI framework designed to efficiently distribute and resolve tasks across various AI systems.
arXiv Detail & Related papers (2024-10-17T06:14:34Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - Next-Gen Software Engineering: AI-Assisted Big Models [0.0]
This paper aims to facilitate a synthesis between models and AI in software engineering.
The paper provides an overview of the current status of AI-assisted software engineering.
A vision of AI-assisted Big Models in SE is put forth, with the aim of capitalising on the advantages inherent to both approaches.
arXiv Detail & Related papers (2024-09-26T16:49:57Z) - Towards Next-Generation Urban Decision Support Systems through AI-Powered Construction of Scientific Ontology using Large Language Models -- A Case in Optimizing Intermodal Freight Transportation [1.6230958216521798]
This study investigates the potential of leveraging the pre-trained Large Language Models (LLMs)
By adopting ChatGPT API as the reasoning core, we outline an integrated workflow that encompasses natural language processing, methontology-based prompt tuning, and transformers.
The outcomes of our methodology are knowledge graphs in widely adopted ontology languages (e.g., OWL, RDF, SPARQL)
arXiv Detail & Related papers (2024-05-29T16:40:31Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
Next-generation multiple input multiple output (MIMO) is expected to be intelligent and scalable.
We propose the concept of the generative AI agent, which is capable of generating tailored and specialized contents.
We present two compelling case studies that demonstrate the effectiveness of leveraging the generative AI agent for performance analysis.
arXiv Detail & Related papers (2024-04-13T02:39:36Z) - An Interactive Agent Foundation Model [49.77861810045509]
We propose an Interactive Agent Foundation Model that uses a novel multi-task agent training paradigm for training AI agents.
Our training paradigm unifies diverse pre-training strategies, including visual masked auto-encoders, language modeling, and next-action prediction.
We demonstrate the performance of our framework across three separate domains -- Robotics, Gaming AI, and Healthcare.
arXiv Detail & Related papers (2024-02-08T18:58:02Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
We present Language-Assisted Multi-Modal instruction tuning dataset, framework, and benchmark.
Our aim is to establish LAMM as a growing ecosystem for training and evaluating MLLMs.
We present a comprehensive dataset and benchmark, which cover a wide range of vision tasks for 2D and 3D vision.
arXiv Detail & Related papers (2023-06-11T14:01:17Z) - Multimodal Explainable Artificial Intelligence: A Comprehensive Review of Methodological Advances and Future Research Directions [2.35574869517894]
This study focuses on analyzing the recent advances in the area of Multimodal XAI (MXAI)
MXAI comprises methods that involve multiple modalities in the primary prediction and explanation tasks.
arXiv Detail & Related papers (2023-06-09T07:51:50Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - Quantitatively Assessing the Benefits of Model-driven Development in
Agent-based Modeling and Simulation [80.49040344355431]
This paper compares the use of MDD and ABMS platforms in terms of effort and developer mistakes.
The obtained results show that MDD4ABMS requires less effort to develop simulations with similar (sometimes better) design quality than NetLogo.
arXiv Detail & Related papers (2020-06-15T23:29:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.