Large Language Models as General Pattern Machines
- URL: http://arxiv.org/abs/2307.04721v2
- Date: Thu, 26 Oct 2023 01:27:29 GMT
- Title: Large Language Models as General Pattern Machines
- Authors: Suvir Mirchandani, Fei Xia, Pete Florence, Brian Ichter, Danny Driess,
Montserrat Gonzalez Arenas, Kanishka Rao, Dorsa Sadigh, Andy Zeng
- Abstract summary: We show that pre-trained large language models (LLMs) are capable of autoregressively completing complex token sequences.
Surprisingly, pattern completion proficiency can be partially retained even when the sequences are expressed using tokens randomly sampled from the vocabulary.
In this work, we investigate how these zero-shot capabilities may be applied to problems in robotics.
- Score: 64.75501424160748
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We observe that pre-trained large language models (LLMs) are capable of
autoregressively completing complex token sequences -- from arbitrary ones
procedurally generated by probabilistic context-free grammars (PCFG), to more
rich spatial patterns found in the Abstraction and Reasoning Corpus (ARC), a
general AI benchmark, prompted in the style of ASCII art. Surprisingly, pattern
completion proficiency can be partially retained even when the sequences are
expressed using tokens randomly sampled from the vocabulary. These results
suggest that without any additional training, LLMs can serve as general
sequence modelers, driven by in-context learning. In this work, we investigate
how these zero-shot capabilities may be applied to problems in robotics -- from
extrapolating sequences of numbers that represent states over time to complete
simple motions, to least-to-most prompting of reward-conditioned trajectories
that can discover and represent closed-loop policies (e.g., a stabilizing
controller for CartPole). While difficult to deploy today for real systems due
to latency, context size limitations, and compute costs, the approach of using
LLMs to drive low-level control may provide an exciting glimpse into how the
patterns among words could be transferred to actions.
Related papers
- Directed Exploration in Reinforcement Learning from Linear Temporal Logic [59.707408697394534]
Linear temporal logic (LTL) is a powerful language for task specification in reinforcement learning.
We show that the synthesized reward signal remains fundamentally sparse, making exploration challenging.
We show how better exploration can be achieved by further leveraging the specification and casting its corresponding Limit Deterministic B"uchi Automaton (LDBA) as a Markov reward process.
arXiv Detail & Related papers (2024-08-18T14:25:44Z) - Non-autoregressive Sequence-to-Sequence Vision-Language Models [63.77614880533488]
We propose a parallel decoding sequence-to-sequence vision-language model that marginalizes over multiple inference paths in the decoder.
The model achieves performance on-par with its state-of-the-art autoregressive counterpart, but is faster at inference time.
arXiv Detail & Related papers (2024-03-04T17:34:59Z) - Language Models as Zero-Shot Trajectory Generators [10.572264780575564]
Large Language Models (LLMs) have recently shown promise as high-level planners for robots.
It is often assumed that LLMs do not possess sufficient knowledge to be used for the low-level trajectories themselves.
This work investigates if an LLM can directly predict a dense sequence of end-effector poses for manipulation tasks.
arXiv Detail & Related papers (2023-10-17T21:57:36Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
Time series forecasting holds significant importance in many real-world dynamic systems.
We present Time-LLM, a reprogramming framework to repurpose large language models for time series forecasting.
Time-LLM is a powerful time series learner that outperforms state-of-the-art, specialized forecasting models.
arXiv Detail & Related papers (2023-10-03T01:31:25Z) - Instruction Position Matters in Sequence Generation with Large Language
Models [67.87516654892343]
Large language models (LLMs) are capable of performing conditional sequence generation tasks, such as translation or summarization.
We propose enhancing the instruction-following capability of LLMs by shifting the position of task instructions after the input sentences.
arXiv Detail & Related papers (2023-08-23T12:36:57Z) - Sequential Monte Carlo Steering of Large Language Models using
Probabilistic Programs [46.721838623748816]
We propose a new inference-time approach to enforcing syntactic and semantic constraints on the outputs of large language models.
Key idea is to specify language generation tasks as posterior inference problems in a class of discrete probabilistic sequence models.
For a computational cost similar to that of beam search, SMC can steer LLMs to solve diverse tasks.
arXiv Detail & Related papers (2023-06-05T17:55:05Z) - Reinforcement Learning with Simple Sequence Priors [9.869634509510016]
We propose an RL algorithm that learns to solve tasks with sequences of actions that are compressible.
We show that the resulting RL algorithm leads to faster learning, and attains higher returns than state-of-the-art model-free approaches.
arXiv Detail & Related papers (2023-05-26T17:18:14Z) - Certified Reinforcement Learning with Logic Guidance [78.2286146954051]
We propose a model-free RL algorithm that enables the use of Linear Temporal Logic (LTL) to formulate a goal for unknown continuous-state/action Markov Decision Processes (MDPs)
The algorithm is guaranteed to synthesise a control policy whose traces satisfy the specification with maximal probability.
arXiv Detail & Related papers (2019-02-02T20:09:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.