Uni-Removal: A Semi-Supervised Framework for Simultaneously Addressing
Multiple Degradations in Real-World Images
- URL: http://arxiv.org/abs/2307.05075v1
- Date: Tue, 11 Jul 2023 07:18:15 GMT
- Title: Uni-Removal: A Semi-Supervised Framework for Simultaneously Addressing
Multiple Degradations in Real-World Images
- Authors: Yongheng Zhang, Danfeng Yan, Yuanqiang Cai
- Abstract summary: Uni-Removal is a twostage semi-supervised framework for addressing the removal of multiple degradations in real-world images.
In the knowledge transfer stage, Uni-Removal leverages a supervised multi-teacher and student architecture.
In the domain adaptation stage, unsupervised fine-tuning is performed by incorporating an adversarial discriminator on real-world images.
- Score: 6.3351090376024155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Removing multiple degradations, such as haze, rain, and blur, from real-world
images poses a challenging and illposed problem. Recently, unified models that
can handle different degradations have been proposed and yield promising
results. However, these approaches focus on synthetic images and experience a
significant performance drop when applied to realworld images. In this paper,
we introduce Uni-Removal, a twostage semi-supervised framework for addressing
the removal of multiple degradations in real-world images using a unified model
and parameters. In the knowledge transfer stage, Uni-Removal leverages a
supervised multi-teacher and student architecture in the knowledge transfer
stage to facilitate learning from pretrained teacher networks specialized in
different degradation types. A multi-grained contrastive loss is introduced to
enhance learning from feature and image spaces. In the domain adaptation stage,
unsupervised fine-tuning is performed by incorporating an adversarial
discriminator on real-world images. The integration of an extended
multi-grained contrastive loss and generative adversarial loss enables the
adaptation of the student network from synthetic to real-world domains.
Extensive experiments on real-world degraded datasets demonstrate the
effectiveness of our proposed method. We compare our Uni-Removal framework with
state-of-the-art supervised and unsupervised methods, showcasing its promising
results in real-world image dehazing, deraining, and deblurring simultaneously.
Related papers
- Efficient Degradation-aware Any Image Restoration [83.92870105933679]
We propose textitDaAIR, an efficient All-in-One image restorer employing a Degradation-aware Learner (DaLe) in the low-rank regime.
By dynamically allocating model capacity to input degradations, we realize an efficient restorer integrating holistic and specific learning.
arXiv Detail & Related papers (2024-05-24T11:53:27Z) - Teacher-Student Network for Real-World Face Super-Resolution with Progressive Embedding of Edge Information [2.280954956645056]
A real-world face super-resolution teacher-student model is proposed, which considers the domain gap between real and synthetic data.
Our proposed approach surpasses state-of-the-art methods in obtaining high-quality face images for real-world FSR.
arXiv Detail & Related papers (2024-05-08T02:48:52Z) - Hybrid-Supervised Dual-Search: Leveraging Automatic Learning for
Loss-free Multi-Exposure Image Fusion [60.221404321514086]
Multi-exposure image fusion (MEF) has emerged as a prominent solution to address the limitations of digital imaging in representing varied exposure levels.
This paper presents a Hybrid-Supervised Dual-Search approach for MEF, dubbed HSDS-MEF, which introduces a bi-level optimization search scheme for automatic design of both network structures and loss functions.
arXiv Detail & Related papers (2023-09-03T08:07:26Z) - All-in-one Multi-degradation Image Restoration Network via Hierarchical
Degradation Representation [47.00239809958627]
We propose a novel All-in-one Multi-degradation Image Restoration Network (AMIRNet)
AMIRNet learns a degradation representation for unknown degraded images by progressively constructing a tree structure through clustering.
This tree-structured representation explicitly reflects the consistency and discrepancy of various distortions, providing a specific clue for image restoration.
arXiv Detail & Related papers (2023-08-06T04:51:41Z) - Bridging Synthetic and Real Images: a Transferable and Multiple
Consistency aided Fundus Image Enhancement Framework [61.74188977009786]
We propose an end-to-end optimized teacher-student framework to simultaneously conduct image enhancement and domain adaptation.
We also propose a novel multi-stage multi-attention guided enhancement network (MAGE-Net) as the backbones of our teacher and student network.
arXiv Detail & Related papers (2023-02-23T06:16:15Z) - Learning Degradation Representations for Image Deblurring [37.80709422920307]
We propose a framework to learn spatially adaptive degradation representations of blurry images.
A novel joint image reblurring and deblurring learning process is presented to improve the expressiveness of degradation representations.
Experiments on the GoPro and RealBlur datasets demonstrate that our proposed deblurring framework with the learned degradation representations outperforms state-of-the-art methods.
arXiv Detail & Related papers (2022-08-10T09:53:16Z) - Real-World Image Super-Resolution by Exclusionary Dual-Learning [98.36096041099906]
Real-world image super-resolution is a practical image restoration problem that aims to obtain high-quality images from in-the-wild input.
Deep learning-based methods have achieved promising restoration quality on real-world image super-resolution datasets.
We propose Real-World image Super-Resolution by Exclusionary Dual-Learning (RWSR-EDL) to address the feature diversity in perceptual- and L1-based cooperative learning.
arXiv Detail & Related papers (2022-06-06T13:28:15Z) - Mutual Learning for Domain Adaptation: Self-distillation Image Dehazing
Network with Sample-cycle [7.452382358080454]
We propose a mutual learning dehazing framework for domain adaption.
Specifically, we first devise two siamese networks: a teacher network in the synthetic domain and a student network in the real domain.
We show that the framework outperforms state-of-the-art dehazing techniques in terms of subjective and objective evaluation.
arXiv Detail & Related papers (2022-03-17T16:32:14Z) - Enhancing Photorealism Enhancement [83.88433283714461]
We present an approach to enhancing the realism of synthetic images using a convolutional network.
We analyze scene layout distributions in commonly used datasets and find that they differ in important ways.
We report substantial gains in stability and realism in comparison to recent image-to-image translation methods.
arXiv Detail & Related papers (2021-05-10T19:00:49Z) - Real-world Person Re-Identification via Degradation Invariance Learning [111.86722193694462]
Person re-identification (Re-ID) in real-world scenarios usually suffers from various degradation factors, e.g., low-resolution, weak illumination, blurring and adverse weather.
We propose a degradation invariance learning framework for real-world person Re-ID.
By introducing a self-supervised disentangled representation learning strategy, our method is able to simultaneously extract identity-related robust features.
arXiv Detail & Related papers (2020-04-10T07:58:50Z) - Learning Invariant Representation for Unsupervised Image Restoration [20.61038510024114]
Cross domain transfer has been applied for unsupervised image restoration tasks.
We propose an unsupervised learning method that explicitly learns invariant presentation from noisy data.
arXiv Detail & Related papers (2020-03-28T11:20:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.