APRF: Anti-Aliasing Projection Representation Field for Inverse Problem
in Imaging
- URL: http://arxiv.org/abs/2307.05270v1
- Date: Tue, 11 Jul 2023 14:04:12 GMT
- Title: APRF: Anti-Aliasing Projection Representation Field for Inverse Problem
in Imaging
- Authors: Zixuan Chen, Lingxiao Yang, Jianhuang Lai and Xiaohua Xie
- Abstract summary: Sparse-view Computed Tomography (SVCT) reconstruction is an ill-posed inverse problem in imaging.
Recent works use Implicit Neural Representations (INRs) to build the coordinate-based mapping between sinograms and CT images.
We propose a self-supervised SVCT reconstruction method -- Anti-Aliasing Projection Representation Field (APRF)
APRF can build the continuous representation between adjacent projection views via the spatial constraints.
- Score: 74.9262846410559
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sparse-view Computed Tomography (SVCT) reconstruction is an ill-posed inverse
problem in imaging that aims to acquire high-quality CT images based on
sparsely-sampled measurements. Recent works use Implicit Neural Representations
(INRs) to build the coordinate-based mapping between sinograms and CT images.
However, these methods have not considered the correlation between adjacent
projection views, resulting in aliasing artifacts on SV sinograms. To address
this issue, we propose a self-supervised SVCT reconstruction method --
Anti-Aliasing Projection Representation Field (APRF), which can build the
continuous representation between adjacent projection views via the spatial
constraints. Specifically, APRF only needs SV sinograms for training, which
first employs a line-segment sampling module to estimate the distribution of
projection views in a local region, and then synthesizes the corresponding
sinogram values using center-based line integral module. After training APRF on
a single SV sinogram itself, it can synthesize the corresponding dense-view
(DV) sinogram with consistent continuity. High-quality CT images can be
obtained by applying re-projection techniques on the predicted DV sinograms.
Extensive experiments on CT images demonstrate that APRF outperforms
state-of-the-art methods, yielding more accurate details and fewer artifacts.
Our code will be publicly available soon.
Related papers
- CT-SDM: A Sampling Diffusion Model for Sparse-View CT Reconstruction across All Sampling Rates [16.985836345715963]
Sparse views X-ray computed tomography has emerged as a contemporary technique to mitigate radiation dose degradation.
Recent studies utilizing deep learning methods has made promising progress in removing artifacts for Sparse-View Computed Tomography (SVCT)
Our study proposes a adaptive reconstruction method to achieve high-performance SVCT reconstruction at any sampling rate.
arXiv Detail & Related papers (2024-09-03T03:06:15Z) - CoCPF: Coordinate-based Continuous Projection Field for Ill-Posed Inverse Problem in Imaging [78.734927709231]
Sparse-view computed tomography (SVCT) reconstruction aims to acquire CT images based on sparsely-sampled measurements.
Due to ill-posedness, implicit neural representation (INR) techniques may leave considerable holes'' (i.e., unmodeled spaces) in their fields, leading to sub-optimal results.
We propose the Coordinate-based Continuous Projection Field (CoCPF), which aims to build hole-free representation fields for SVCT reconstruction.
arXiv Detail & Related papers (2024-06-21T08:38:30Z) - Visual Delta Generator with Large Multi-modal Models for Semi-supervised Composed Image Retrieval [50.72924579220149]
Composed Image Retrieval (CIR) is a task that retrieves images similar to a query, based on a provided textual modification.
Current techniques rely on supervised learning for CIR models using labeled triplets of the reference image, text, target image.
We propose a new semi-supervised CIR approach where we search for a reference and its related target images in auxiliary data.
arXiv Detail & Related papers (2024-04-23T21:00:22Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Generative Modeling in Sinogram Domain for Sparse-view CT Reconstruction [12.932897771104825]
radiation dose in computed tomography (CT) examinations can be significantly reduced by intuitively decreasing the number of projection views.
Previous deep learning techniques with sparse-view data require sparse-view/full-view CT image pairs to train the network with supervised manners.
We present a fully unsupervised score-based generative model in sinogram domain for sparse-view CT reconstruction.
arXiv Detail & Related papers (2022-11-25T06:49:18Z) - REGAS: REspiratory-GAted Synthesis of Views for Multi-Phase CBCT
Reconstruction from a single 3D CBCT Acquisition [75.64791080418162]
REGAS proposes a self-supervised method to synthesize the undersampled tomographic views and mitigate aliasing artifacts in reconstructed images.
To address the large memory cost of deep neural networks on high resolution 4D data, REGAS introduces a novel Ray Path Transformation (RPT) that allows for distributed, differentiable forward projections.
arXiv Detail & Related papers (2022-08-17T03:42:19Z) - DuDoTrans: Dual-Domain Transformer Provides More Attention for Sinogram
Restoration in Sparse-View CT Reconstruction [13.358197688568463]
iodine radiation in the imaging process induces irreversible injury.
Iterative models are proposed to alleviate the appeared artifacts in sparse-view CT images, but the cost is too expensive.
We propose textbfDual-textbfDomain textbfDuDoTrans to reconstruct CT image with both the enhanced and raw sinograms.
arXiv Detail & Related papers (2021-11-21T10:41:07Z) - Learning Ultrasound Rendering from Cross-Sectional Model Slices for
Simulated Training [13.640630434743837]
Computational simulations can facilitate the training of such skills in virtual reality.
We propose herein to bypass any rendering and simulation process at interactive time.
We use a generative adversarial framework with a dedicated generator architecture and input feeding scheme.
arXiv Detail & Related papers (2021-01-20T21:58:19Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.