Spectral-Bias and Kernel-Task Alignment in Physically Informed Neural
Networks
- URL: http://arxiv.org/abs/2307.06362v2
- Date: Thu, 5 Oct 2023 18:00:03 GMT
- Title: Spectral-Bias and Kernel-Task Alignment in Physically Informed Neural
Networks
- Authors: Inbar Seroussi, Asaf Miron and Zohar Ringel
- Abstract summary: Physically informed neural networks (PINNs) are a promising emerging method for solving differential equations.
We propose a comprehensive theoretical framework that sheds light on this important problem.
We derive an integro-differential equation that governs PINN prediction in the large data-set limit.
- Score: 4.604003661048267
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physically informed neural networks (PINNs) are a promising emerging method
for solving differential equations. As in many other deep learning approaches,
the choice of PINN design and training protocol requires careful craftsmanship.
Here, we suggest a comprehensive theoretical framework that sheds light on this
important problem. Leveraging an equivalence between infinitely
over-parameterized neural networks and Gaussian process regression (GPR), we
derive an integro-differential equation that governs PINN prediction in the
large data-set limit -- the neurally-informed equation. This equation augments
the original one by a kernel term reflecting architecture choices and allows
quantifying implicit bias induced by the network via a spectral decomposition
of the source term in the original differential equation.
Related papers
- Chebyshev Spectral Neural Networks for Solving Partial Differential Equations [0.0]
The study uses a feedforward neural network model and error backpropagation principles, utilizing automatic differentiation (AD) to compute the loss function.
The numerical efficiency and accuracy of the CSNN model are investigated through testing on elliptic partial differential equations, and it is compared with the well-known Physics-Informed Neural Network(PINN) method.
arXiv Detail & Related papers (2024-06-06T05:31:45Z) - Novel Kernel Models and Exact Representor Theory for Neural Networks Beyond the Over-Parameterized Regime [52.00917519626559]
This paper presents two models of neural-networks and their training applicable to neural networks of arbitrary width, depth and topology.
We also present an exact novel representor theory for layer-wise neural network training with unregularized gradient descent in terms of a local-extrinsic neural kernel (LeNK)
This representor theory gives insight into the role of higher-order statistics in neural network training and the effect of kernel evolution in neural-network kernel models.
arXiv Detail & Related papers (2024-05-24T06:30:36Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - PMNN:Physical Model-driven Neural Network for solving time-fractional
differential equations [17.66402435033991]
An innovative Physical Model-driven Neural Network (PMNN) method is proposed to solve time-fractional differential equations.
It effectively combines deep neural networks (DNNs) with approximation of fractional derivatives.
arXiv Detail & Related papers (2023-10-07T12:43:32Z) - Imbedding Deep Neural Networks [0.0]
Continuous depth neural networks, such as Neural ODEs, have refashioned the understanding of residual neural networks in terms of non-linear vector-valued optimal control problems.
We propose a new approach which explicates the network's depth' as a fundamental variable, thus reducing the problem to a system of forward-facing initial value problems.
arXiv Detail & Related papers (2022-01-31T22:00:41Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
Spiking neural networks (SNNs) are brain-inspired models that enable energy-efficient implementation on neuromorphic hardware.
Most existing methods imitate the backpropagation framework and feedforward architectures for artificial neural networks.
We propose a novel training method that does not rely on the exact reverse of the forward computation.
arXiv Detail & Related papers (2021-09-29T07:46:54Z) - Conditional physics informed neural networks [85.48030573849712]
We introduce conditional PINNs (physics informed neural networks) for estimating the solution of classes of eigenvalue problems.
We show that a single deep neural network can learn the solution of partial differential equations for an entire class of problems.
arXiv Detail & Related papers (2021-04-06T18:29:14Z) - Partial Differential Equations is All You Need for Generating Neural Architectures -- A Theory for Physical Artificial Intelligence Systems [40.20472268839781]
We generalize the reaction-diffusion equation in statistical physics, Schr"odinger equation in quantum mechanics, Helmholtz equation in paraxial optics.
We take finite difference method to discretize NPDE for finding numerical solution.
Basic building blocks of deep neural network architecture, including multi-layer perceptron, convolutional neural network and recurrent neural networks, are generated.
arXiv Detail & Related papers (2021-03-10T00:05:46Z) - SPINN: Sparse, Physics-based, and Interpretable Neural Networks for PDEs [0.0]
We introduce a class of Sparse, Physics-based, and Interpretable Neural Networks (SPINN) for solving ordinary and partial differential equations.
By reinterpreting a traditional meshless representation of solutions of PDEs as a special sparse deep neural network, we develop a class of sparse neural network architectures that are interpretable.
arXiv Detail & Related papers (2021-02-25T17:45:50Z) - Finite Versus Infinite Neural Networks: an Empirical Study [69.07049353209463]
kernel methods outperform fully-connected finite-width networks.
Centered and ensembled finite networks have reduced posterior variance.
Weight decay and the use of a large learning rate break the correspondence between finite and infinite networks.
arXiv Detail & Related papers (2020-07-31T01:57:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.