Multimodal Object Detection in Remote Sensing
- URL: http://arxiv.org/abs/2307.06724v1
- Date: Thu, 13 Jul 2023 12:37:14 GMT
- Title: Multimodal Object Detection in Remote Sensing
- Authors: Abdelbadie Belmouhcine, Jean-Christophe Burnel, Luc Courtrai, Minh-Tan
Pham and S\'ebastien Lef\`evre
- Abstract summary: We present a comparison of methods for multimodal object detection in remote sensing.
We survey available multimodal datasets suitable for evaluation, and discuss future directions.
- Score: 2.8698937226234795
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object detection in remote sensing is a crucial computer vision task that has
seen significant advancements with deep learning techniques. However, most
existing works in this area focus on the use of generic object detection and do
not leverage the potential of multimodal data fusion. In this paper, we present
a comparison of methods for multimodal object detection in remote sensing,
survey available multimodal datasets suitable for evaluation, and discuss
future directions.
Related papers
- Interactive Masked Image Modeling for Multimodal Object Detection in Remote Sensing [2.0528748158119434]
multimodal learning can be used to integrate features from different data modalities, thereby improving detection accuracy.
In this paper, we propose to use Masked Image Modeling (MIM) as a pre-training technique, leveraging self-supervised learning on unlabeled data.
To address this, we propose a new interactive MIM method that can establish interactions between different tokens, which is particularly beneficial for object detection in remote sensing.
arXiv Detail & Related papers (2024-09-13T14:50:50Z) - Multimodal Object Detection via Probabilistic a priori Information Integration [0.0]
Multimodal object detection has shown promise in remote sensing.
In this paper, we investigate multimodal object detection where only one modality contains the target object.
We propose to resolve the alignment problem by converting the contextual binary information into probability maps.
arXiv Detail & Related papers (2024-05-24T14:28:06Z) - MMDR: A Result Feature Fusion Object Detection Approach for Autonomous
System [5.499393552545591]
The proposed approach, called Multi-Modal Detector based on Result features (MMDR), is designed to work for both 2D and 3D object detection tasks.
The MMDR model incorporates shallow global features during the feature fusion stage, endowing the model with the ability to perceive background information.
arXiv Detail & Related papers (2023-04-19T12:28:42Z) - Recent Advances in Embedding Methods for Multi-Object Tracking: A Survey [71.10448142010422]
Multi-object tracking (MOT) aims to associate target objects across video frames in order to obtain entire moving trajectories.
Embedding methods play an essential role in object location estimation and temporal identity association in MOT.
We first conduct a comprehensive overview with in-depth analysis for embedding methods in MOT from seven different perspectives.
arXiv Detail & Related papers (2022-05-22T06:54:33Z) - Multi-modal Transformers Excel at Class-agnostic Object Detection [105.10403103027306]
We argue that existing methods lack a top-down supervision signal governed by human-understandable semantics.
We develop an efficient and flexible MViT architecture using multi-scale feature processing and deformable self-attention.
We show the significance of MViT proposals in a diverse range of applications.
arXiv Detail & Related papers (2021-11-22T18:59:29Z) - Deep Learning for UAV-based Object Detection and Tracking: A Survey [25.34399619170044]
Unmanned aerial vehicle (UAV) has recently become a hotspot across the fields of computer vision (CV) and remote sensing (RS)
Inspired by recent success of deep learning (DL), many advanced object detection and tracking approaches have been widely applied to various UAV-related tasks.
This paper provides a comprehensive survey on the research progress and prospects of DL-based UAV object detection and tracking methods.
arXiv Detail & Related papers (2021-10-25T04:43:24Z) - Infrared Small-Dim Target Detection with Transformer under Complex
Backgrounds [155.388487263872]
We propose a new infrared small-dim target detection method with the transformer.
We adopt the self-attention mechanism of the transformer to learn the interaction information of image features in a larger range.
We also design a feature enhancement module to learn more features of small-dim targets.
arXiv Detail & Related papers (2021-09-29T12:23:41Z) - Deep Learning on Monocular Object Pose Detection and Tracking: A
Comprehensive Overview [8.442460766094674]
Object pose detection and tracking has attracted increasing attention due to its wide applications in many areas, such as autonomous driving, robotics, and augmented reality.
Deep learning is the most promising one that has shown better performance than others.
This paper presents a comprehensive review of recent progress in object pose detection and tracking that belongs to the deep learning technical route.
arXiv Detail & Related papers (2021-05-29T12:59:29Z) - Ensembling object detectors for image and video data analysis [98.26061123111647]
We propose a method for ensembling the outputs of multiple object detectors for improving detection performance and precision of bounding boxes on image data.
We extend it to video data by proposing a two-stage tracking-based scheme for detection refinement.
arXiv Detail & Related papers (2021-02-09T12:38:16Z) - Multi-Task Multi-Sensor Fusion for 3D Object Detection [93.68864606959251]
We present an end-to-end learnable architecture that reasons about 2D and 3D object detection as well as ground estimation and depth completion.
Our experiments show that all these tasks are complementary and help the network learn better representations by fusing information at various levels.
arXiv Detail & Related papers (2020-12-22T22:49:15Z) - Perceiving Traffic from Aerial Images [86.994032967469]
We propose an object detection method called Butterfly Detector that is tailored to detect objects in aerial images.
We evaluate our Butterfly Detector on two publicly available UAV datasets (UAVDT and VisDrone 2019) and show that it outperforms previous state-of-the-art methods while remaining real-time.
arXiv Detail & Related papers (2020-09-16T11:37:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.