Exponential Qubit Reduction in Optimization for Financial Transaction Settlement
- URL: http://arxiv.org/abs/2307.07193v3
- Date: Tue, 3 Sep 2024 09:31:26 GMT
- Title: Exponential Qubit Reduction in Optimization for Financial Transaction Settlement
- Authors: Elias X. Huber, Benjamin Y. L. Tan, Paul R. Griffin, Dimitris G. Angelakis,
- Abstract summary: We extend the qubit-efficient encoding presented in [Tan et al., Quantum 5, 454 (2021) and apply it to instances of the financial transaction settlement problem constructed from data provided by a regulated financial exchange.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We extend the qubit-efficient encoding presented in [Tan et al., Quantum 5, 454 (2021)] and apply it to instances of the financial transaction settlement problem constructed from data provided by a regulated financial exchange. Our methods are directly applicable to any QUBO problem with linear inequality constraints. Our extension of previously proposed methods consists of a simplification in varying the number of qubits used to encode correlations as well as a new class of variational circuits which incorporate symmetries, thereby reducing sampling overhead, improving numerical stability and recovering the expression of the cost objective as a Hermitian observable. We also propose optimality-preserving methods to reduce variance in real-world data and substitute continuous slack variables. We benchmark our methods against standard QAOA for problems consisting of 16 transactions and obtain competitive results. Our newly proposed variational ansatz performs best overall. We demonstrate tackling problems with 128 transactions on real quantum hardware, exceeding previous results bounded by NISQ hardware by almost two orders of magnitude.
Related papers
- Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum [56.37522020675243]
We provide the first proof of convergence for normalized error feedback algorithms across a wide range of machine learning problems.
We show that due to their larger allowable stepsizes, our new normalized error feedback algorithms outperform their non-normalized counterparts on various tasks.
arXiv Detail & Related papers (2024-10-22T10:19:27Z) - Effective Embedding of Integer Linear Inequalities for Variational Quantum Algorithms [0.0]
In variational quantum algorithms, constraints are usually added to the problem objective via penalty terms.
In this work, we explore approaches to model linear inequalities for quantum algorithms without these drawbacks.
Our main suggestion is to omit the slack qubits completely and evaluate the inequality classically during parameter tuning.
arXiv Detail & Related papers (2024-03-27T09:32:26Z) - Improving Performance in Combinatorial Optimization Problems with
Inequality Constraints: An Evaluation of the Unbalanced Penalization Method
on D-Wave Advantage [0.0]
A new method known as unbalanced penalization has been presented to avoid using slack variables.
This work tests the unbalanced penalization method using real quantum hardware on D-Wave Advantage for the traveling salesman problem (TSP)
The results show that the unbalanced penalization method outperforms the solutions found using slack variables.
arXiv Detail & Related papers (2023-05-30T05:40:50Z) - Variance-Dependent Regret Bounds for Linear Bandits and Reinforcement
Learning: Adaptivity and Computational Efficiency [90.40062452292091]
We present the first computationally efficient algorithm for linear bandits with heteroscedastic noise.
Our algorithm is adaptive to the unknown variance of noise and achieves an $tildeO(d sqrtsum_k = 1K sigma_k2 + d)$ regret.
We also propose a variance-adaptive algorithm for linear mixture Markov decision processes (MDPs) in reinforcement learning.
arXiv Detail & Related papers (2023-02-21T00:17:24Z) - Multiobjective variational quantum optimization for constrained
problems: an application to Cash Management [45.82374977939355]
We introduce a new method for solving optimization problems with challenging constraints using variational quantum algorithms.
We test our proposal on a real-world problem with great relevance in finance: the Cash Management problem.
Our empirical results show a significant improvement in terms of the cost of the achieved solutions, but especially in the avoidance of local minima.
arXiv Detail & Related papers (2023-02-08T17:09:20Z) - Unbalanced penalization: A new approach to encode inequality constraints of combinatorial problems for quantum optimization algorithms [42.29248343585333]
We present an alternative method that does not require extra slack variables.
We evaluate our approach on the traveling salesman problem, the bin packing problem, and the knapsack problem.
This new approach can be used to solve problems with inequality constraints with a reduced number of resources.
arXiv Detail & Related papers (2022-11-25T06:05:18Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
Constrained optimization problems abound in industry, from portfolio optimization to logistics.
One of the major roadblocks in solving these problems is the presence of non-trivial hard constraints which limit the valid search space.
In this work, we encode arbitrary integer-valued equality constraints of the form Ax=b, directly into U(1) symmetric networks (TNs) and leverage their applicability as quantum-inspired generative models.
arXiv Detail & Related papers (2022-11-16T18:59:54Z) - Learning to Optimize with Stochastic Dominance Constraints [103.26714928625582]
In this paper, we develop a simple yet efficient approach for the problem of comparing uncertain quantities.
We recast inner optimization in the Lagrangian as a learning problem for surrogate approximation, which bypasses apparent intractability.
The proposed light-SD demonstrates superior performance on several representative problems ranging from finance to supply chain management.
arXiv Detail & Related papers (2022-11-14T21:54:31Z) - A Primal-Dual Approach to Solving Variational Inequalities with General Constraints [54.62996442406718]
Yang et al. (2023) recently showed how to use first-order gradient methods to solve general variational inequalities.
We prove the convergence of this method and show that the gap function of the last iterate of the method decreases at a rate of $O(frac1sqrtK)$ when the operator is $L$-Lipschitz and monotone.
arXiv Detail & Related papers (2022-10-27T17:59:09Z) - Individual Fairness Guarantees for Neural Networks [0.0]
We consider the problem of certifying the individual fairness (IF) of feed-forward neural networks (NNs)
We work with the $epsilon$-$delta$-IF formulation, which requires that the output difference between any pair of $epsilon$-similar individuals is bounded by a maximum decision tolerance.
We show how this formulation can be used to encourage models' fairness at training time by modifying the NN loss, and empirically confirm our approach yields NNs that are orders of magnitude fairer than state-of-the-art methods.
arXiv Detail & Related papers (2022-05-11T20:21:07Z) - Instance-optimality in optimal value estimation: Adaptivity via
variance-reduced Q-learning [99.34907092347733]
We analyze the problem of estimating optimal $Q$-value functions for a discounted Markov decision process with discrete states and actions.
Using a local minimax framework, we show that this functional arises in lower bounds on the accuracy on any estimation procedure.
In the other direction, we establish the sharpness of our lower bounds, up to factors logarithmic in the state and action spaces, by analyzing a variance-reduced version of $Q$-learning.
arXiv Detail & Related papers (2021-06-28T00:38:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.