3D Shape-Based Myocardial Infarction Prediction Using Point Cloud
Classification Networks
- URL: http://arxiv.org/abs/2307.07298v1
- Date: Fri, 14 Jul 2023 12:21:11 GMT
- Title: 3D Shape-Based Myocardial Infarction Prediction Using Point Cloud
Classification Networks
- Authors: Marcel Beetz, Yilong Yang, Abhirup Banerjee, Lei Li, Vicente Grau
- Abstract summary: Myocardial infarction (MI) is one of the most prevalent cardiovascular diseases.
We investigate the utility of complete 3D cardiac shapes in the form of point clouds for an improved detection of MI events.
- Score: 12.231105631777881
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Myocardial infarction (MI) is one of the most prevalent cardiovascular
diseases with associated clinical decision-making typically based on
single-valued imaging biomarkers. However, such metrics only approximate the
complex 3D structure and physiology of the heart and hence hinder a better
understanding and prediction of MI outcomes. In this work, we investigate the
utility of complete 3D cardiac shapes in the form of point clouds for an
improved detection of MI events. To this end, we propose a fully automatic
multi-step pipeline consisting of a 3D cardiac surface reconstruction step
followed by a point cloud classification network. Our method utilizes recent
advances in geometric deep learning on point clouds to enable direct and
efficient multi-scale learning on high-resolution surface models of the cardiac
anatomy. We evaluate our approach on 1068 UK Biobank subjects for the tasks of
prevalent MI detection and incident MI prediction and find improvements of ~13%
and ~5% respectively over clinical benchmarks. Furthermore, we analyze the role
of each ventricle and cardiac phase for 3D shape-based MI detection and conduct
a visual analysis of the morphological and physiological patterns typically
associated with MI outcomes.
Related papers
- Refining Myocardial Infarction Detection: A Novel Multi-Modal Composite Kernel Strategy in One-Class Classification [14.469786240272365]
Early detection of myocardial infarction (MI) is vital to prevent further damage.
This study introduces a novel method for early MI detection using a one-class classification (OCC) algorithm in echocardiography.
Our proposed multi-view approach achieves a geometric mean of 71.24%, signifying a substantial advancement in echocardiography-based MI diagnosis.
arXiv Detail & Related papers (2024-02-09T16:41:50Z) - Multi-view Hybrid Graph Convolutional Network for Volume-to-mesh Reconstruction in Cardiovascular MRI [43.47826598981827]
We introduce HybridVNet, a novel architecture for direct image-to-mesh extraction.
We show it can efficiently handle surface and volumetric meshes by encoding them as graph structures.
Our model combines traditional convolutional networks with variational graph generative models, deep supervision and mesh-specific regularisation.
arXiv Detail & Related papers (2023-11-22T21:51:29Z) - Digital twinning of cardiac electrophysiology models from the surface
ECG: a geodesic backpropagation approach [39.36827689390718]
We introduce a novel method, Geodesic-BP, to solve the inverse eikonal problem.
We show that Geodesic-BP can reconstruct a simulated cardiac activation with high accuracy in a synthetic test case.
Given the future shift towards personalized medicine, Geodesic-BP has the potential to help in future functionalizations of cardiac models.
arXiv Detail & Related papers (2023-08-16T14:57:12Z) - Modeling 3D cardiac contraction and relaxation with point cloud
deformation networks [4.65840670565844]
We propose the Point Cloud Deformation Network (PCD-Net) as a novel geometric deep learning approach to model 3D cardiac contraction and relaxation.
We evaluate our approach on a large dataset of over 10,000 cases from the UK Biobank study.
arXiv Detail & Related papers (2023-07-20T14:56:29Z) - Ensemble Learning of Myocardial Displacements for Myocardial Infarction
Detection in Echocardiography [15.153823114115307]
Early detection and localization of myocardial infarction can reduce the severity of cardiac damage.
Deep learning techniques have shown promise for detecting MI in echocardiographic images.
Our study introduces a robust method that combines features from multiple segmentation models to improve MI classification performance.
arXiv Detail & Related papers (2023-03-12T20:16:14Z) - Three-dimensional micro-structurally informed in silico myocardium --
towards virtual imaging trials in cardiac diffusion weighted MRI [58.484353709077034]
We propose a novel method to generate a realistic numerical phantom of myocardial microstructure.
In-silico tissue models enable evaluating quantitative models of magnetic resonance imaging.
arXiv Detail & Related papers (2022-08-22T22:01:44Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS)
MyoPS combines three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020.
The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation.
arXiv Detail & Related papers (2022-01-10T06:37:23Z) - Cardiac Segmentation on CT Images through Shape-Aware Contour Attentions [1.212901554957637]
The cardiac organ consists of multiple substructures, i.e., ventricles, atriums, aortas, arteries, veins, and myocardium.
These cardiac substructures are proximate to each other and have indiscernible boundaries.
We introduce a novel model to exploit shape and boundary-aware features.
arXiv Detail & Related papers (2021-05-27T13:54:59Z) - Spatio-temporal Multi-task Learning for Cardiac MRI Left Ventricle
Quantification [6.887389908965403]
We propose a learning-temporal multi-task approach to obtain a complete set of measurements of cardiac left ventricle (LV) morphology.
We first segment LVs using an encoder-decoder network and then introduce a framework to regress 11 LV indices and classify the cardiac phase.
The proposed model is based on the 3D-temporal convolutions, which extract spatial and features from MR images.
arXiv Detail & Related papers (2020-12-24T17:48:35Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.