Investigating ChatGPT's Potential to Assist in Requirements Elicitation
Processes
- URL: http://arxiv.org/abs/2307.07381v1
- Date: Fri, 14 Jul 2023 14:45:36 GMT
- Title: Investigating ChatGPT's Potential to Assist in Requirements Elicitation
Processes
- Authors: Krishna Ronanki, Christian Berger, Jennifer Horkoff
- Abstract summary: There is little research involving the utilization of Generative AI-based NLP tools and techniques for requirements elicitation.
Large Language Models (LLM) like ChatGPT have gained significant recognition due to their notably improved performance in NLP tasks.
In comparing the quality of requirements generated by ChatGPT with those formulated by human experts, we found that ChatGPT-generated requirements are highly Abstract, Atomic, Consistent, Correct, and Understandable.
- Score: 4.797371814812294
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Natural Language Processing (NLP) for Requirements Engineering (RE) (NLP4RE)
seeks to apply NLP tools, techniques, and resources to the RE process to
increase the quality of the requirements. There is little research involving
the utilization of Generative AI-based NLP tools and techniques for
requirements elicitation. In recent times, Large Language Models (LLM) like
ChatGPT have gained significant recognition due to their notably improved
performance in NLP tasks. To explore the potential of ChatGPT to assist in
requirements elicitation processes, we formulated six questions to elicit
requirements using ChatGPT. Using the same six questions, we conducted
interview-based surveys with five RE experts from academia and industry and
collected 30 responses containing requirements. The quality of these 36
responses (human-formulated + ChatGPT-generated) was evaluated over seven
different requirements quality attributes by another five RE experts through a
second round of interview-based surveys. In comparing the quality of
requirements generated by ChatGPT with those formulated by human experts, we
found that ChatGPT-generated requirements are highly Abstract, Atomic,
Consistent, Correct, and Understandable. Based on these results, we present the
most pressing issues related to LLMs and what future research should focus on
to leverage the emergent behaviour of LLMs more effectively in natural
language-based RE activities.
Related papers
- LLMREI: Automating Requirements Elicitation Interviews with LLMs [47.032121951473435]
This study introduces LLMREI, a chat bot designed to conduct requirements elicitation interviews with minimal human intervention.<n>We evaluated its performance in 33 simulated stakeholder interviews.<n>Our findings indicate that LLMREI makes a similar number of errors compared to human interviewers, is capable of extracting a large portion of requirements, and demonstrates a notable ability to generate highly context-dependent questions.
arXiv Detail & Related papers (2025-07-03T12:18:05Z) - RECOVER: Toward the Automatic Requirements Generation from Stakeholders' Conversations [10.706772429994384]
This paper introduces RECOVER, a novel requirements engineering approach that leverages NLP and foundation models to automatically extract system requirements from stakeholder interactions.
The approach is evaluated using a mixed-method research design that combines statistical performance analysis with a user study involving requirements engineers.
The evaluation shows promising results regarding the performance of RECOVER, as the generated requirements exhibit satisfactory quality in their correctness, completeness, and actionability.
arXiv Detail & Related papers (2024-11-29T08:52:40Z) - SUPER: Evaluating Agents on Setting Up and Executing Tasks from Research Repositories [55.161075901665946]
Super aims to capture the realistic challenges faced by researchers working with Machine Learning (ML) and Natural Language Processing (NLP) research repositories.
Our benchmark comprises three distinct problem sets: 45 end-to-end problems with annotated expert solutions, 152 sub problems derived from the expert set that focus on specific challenges, and 602 automatically generated problems for larger-scale development.
We show that state-of-the-art approaches struggle to solve these problems with the best model (GPT-4o) solving only 16.3% of the end-to-end set, and 46.1% of the scenarios.
arXiv Detail & Related papers (2024-09-11T17:37:48Z) - MACAROON: Training Vision-Language Models To Be Your Engaged Partners [95.32771929749514]
Large vision-language models (LVLMs) generate detailed responses even when questions are ambiguous or unlabeled.
In this study, we aim to shift LVLMs from passive answer providers to proactive engaged partners.
We introduce MACAROON, self-iMaginAtion for ContrAstive pReference OptimizatiON, which instructs LVLMs to autonomously generate contrastive response pairs for unlabeled questions.
arXiv Detail & Related papers (2024-06-20T09:27:33Z) - Practical Guidelines for the Selection and Evaluation of Natural Language Processing Techniques in Requirements Engineering [8.779031107963942]
Natural language (NL) is now a cornerstone of requirements automation.
With so many different NLP solution strategies available, it can be challenging to choose the right strategy for a specific RE task.
In particular, we discuss how to choose among different strategies such as traditional NLP, feature-based machine learning, and language-model-based methods.
arXiv Detail & Related papers (2024-01-03T02:24:35Z) - The Shifted and The Overlooked: A Task-oriented Investigation of
User-GPT Interactions [114.67699010359637]
We analyze a large-scale collection of real user queries to GPT.
We find that tasks such as design'' and planning'' are prevalent in user interactions but are largely neglected or different from traditional NLP benchmarks.
arXiv Detail & Related papers (2023-10-19T02:12:17Z) - Pushing the Limits of ChatGPT on NLP Tasks [79.17291002710517]
Despite the success of ChatGPT, its performances on most NLP tasks are still well below the supervised baselines.
In this work, we looked into the causes, and discovered that its subpar performance was caused by the following factors.
We propose a collection of general modules to address these issues, in an attempt to push the limits of ChatGPT on NLP tasks.
arXiv Detail & Related papers (2023-06-16T09:40:05Z) - Empirical Evaluation of ChatGPT on Requirements Information Retrieval
Under Zero-Shot Setting [12.733403458944972]
We empirically evaluate ChatGPT's performance on requirements information retrieval tasks.
Under zero-shot setting, evaluation results reveal ChatGPT's promising ability to retrieve requirements relevant information.
arXiv Detail & Related papers (2023-04-25T04:09:45Z) - Does Synthetic Data Generation of LLMs Help Clinical Text Mining? [51.205078179427645]
We investigate the potential of OpenAI's ChatGPT to aid in clinical text mining.
We propose a new training paradigm that involves generating a vast quantity of high-quality synthetic data.
Our method has resulted in significant improvements in the performance of downstream tasks.
arXiv Detail & Related papers (2023-03-08T03:56:31Z) - ChatGPT: Jack of all trades, master of none [4.693597927153063]
OpenAI has released the Chat Generative Pre-trained Transformer (ChatGPT)
We examined ChatGPT's capabilities on 25 diverse analytical NLP tasks.
We automated ChatGPT and GPT-4 prompting process and analyzed more than 49k responses.
arXiv Detail & Related papers (2023-02-21T15:20:37Z) - Is ChatGPT a General-Purpose Natural Language Processing Task Solver? [113.22611481694825]
Large language models (LLMs) have demonstrated the ability to perform a variety of natural language processing (NLP) tasks zero-shot.
Recently, the debut of ChatGPT has drawn a great deal of attention from the natural language processing (NLP) community.
It is not yet known whether ChatGPT can serve as a generalist model that can perform many NLP tasks zero-shot.
arXiv Detail & Related papers (2023-02-08T09:44:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.