Atlas-Based Interpretable Age Prediction In Whole-Body MR Images
- URL: http://arxiv.org/abs/2307.07439v5
- Date: Wed, 27 Nov 2024 10:26:18 GMT
- Title: Atlas-Based Interpretable Age Prediction In Whole-Body MR Images
- Authors: Sophie Starck, Yadunandan Vivekanand Kini, Jessica Johanna Maria Ritter, Rickmer Braren, Daniel Rueckert, Tamara Mueller,
- Abstract summary: We investigate the ageing of the human body on a large scale by using whole-body 3D images.<n>We utilise the Grad-CAM method to determine the body areas most predictive of a person's age.<n>We show that the investigation of the full 3D volume of the whole body and the population-wide analysis can give important insights into which body parts play the most important roles in predicting a person's age.
- Score: 8.947616387158142
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Age prediction is an important part of medical assessments and research. It can aid in detecting diseases as well as abnormal ageing by highlighting potential discrepancies between chronological and biological age. To improve understanding of age-related changes in various body parts, we investigate the ageing of the human body on a large scale by using whole-body 3D images. We utilise the Grad-CAM method to determine the body areas most predictive of a person's age. In order to expand our analysis beyond individual subjects, we employ registration techniques to generate population-wide importance maps that show the most predictive areas in the body for a whole cohort of subjects. We show that the investigation of the full 3D volume of the whole body and the population-wide analysis can give important insights into which body parts play the most important roles in predicting a person's age. Our findings reveal three primary areas of interest: the spine, the autochthonous back muscles, and the cardiac region, which exhibits the highest importance. Finally, we investigate differences between subjects that show accelerated and decelerated ageing.
Related papers
- Towards prediction of morphological heart age from computed tomography angiography [2.0413529764205838]
Age prediction from medical images or other health-related non-imaging data is an important approach to data-driven aging research.
We studied the prediction of age from computed tomography angiography (CTA) images, which provide detailed representations of the heart morphology.
arXiv Detail & Related papers (2025-04-22T10:48:27Z) - Dual Graph Attention based Disentanglement Multiple Instance Learning for Brain Age Estimation [24.548441213107566]
We propose a Dual Graph Attention based Disentanglement Multi-instance Learning (DGA-DMIL) framework for improving brain age estimation.
A dual graph attention aggregator is then proposed to learn the backbone features by exploiting the intra- and inter-instance relationships.
Our proposed model demonstrates exceptional accuracy in estimating brain age, achieving a remarkable mean absolute error of 2.12 years in the UK Biobank.
arXiv Detail & Related papers (2024-03-02T16:13:06Z) - Multimodal brain age estimation using interpretable adaptive
population-graph learning [58.99653132076496]
We propose a framework that learns a population graph structure optimized for the downstream task.
An attention mechanism assigns weights to a set of imaging and non-imaging features.
By visualizing the attention weights that were the most important for the graph construction, we increase the interpretability of the graph.
arXiv Detail & Related papers (2023-07-10T15:35:31Z) - Brain Structure Ages -- A new biomarker for multi-disease classification [0.0]
We propose to extend the notion of global brain age by estimating brain structure ages using structural magnetic resonance imaging.
Brain structure ages can be used to compute the deviation from the normal aging process of each brain structure.
arXiv Detail & Related papers (2023-04-13T14:56:51Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
We introduce a novel semi-supervised 2D medical image segmentation framework termed Mine yOur owN Anatomy (MONA)
First, prior work argues that every pixel equally matters to the model training; we observe empirically that this alone is unlikely to define meaningful anatomical features.
Second, we construct a set of objectives that encourage the model to be capable of decomposing medical images into a collection of anatomical features.
arXiv Detail & Related papers (2022-09-27T15:50:31Z) - Generative Modelling of the Ageing Heart with Cross-Sectional Imaging
and Clinical Data [13.819131884449881]
We propose a novel conditional generative model to describe the changes of 3D anatomy of the heart during ageing.
We train the model on a large-scale cross-sectional dataset of cardiac anatomies and evaluate on both cross-sectional and longitudinal datasets.
arXiv Detail & Related papers (2022-08-28T06:14:39Z) - Unsupervised Anomaly Detection in 3D Brain MRI using Deep Learning with
Multi-Task Brain Age Prediction [53.122045119395594]
Unsupervised anomaly detection (UAD) in brain MRI with deep learning has shown promising results.
We propose deep learning for UAD in 3D brain MRI considering additional age information.
Based on our analysis, we propose a novel deep learning approach for UAD with multi-task age prediction.
arXiv Detail & Related papers (2022-01-31T09:39:52Z) - Voxel-level Importance Maps for Interpretable Brain Age Estimation [70.5330922395729]
We focus on the task of brain age regression from 3D brain Magnetic Resonance (MR) images using a Convolutional Neural Network, termed prediction model.
We implement a noise model which aims to add as much noise as possible to the input without harming the performance of the prediction model.
We test our method on 13,750 3D brain MR images from the UK Biobank, and our findings are consistent with the existing neuropathology literature.
arXiv Detail & Related papers (2021-08-11T18:08:09Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
Brain age estimation from Magnetic Resonance Images (MRI) derives the difference between a subject's biological brain age and their chronological age.
Early detection of neurodegeneration manifesting as a higher brain age can potentially facilitate better medical care and planning for affected individuals.
We develop a new deep learning approach that uses 3D patches of the brain as well as convolutional neural networks (CNNs) to develop a localised brain age estimator.
arXiv Detail & Related papers (2020-08-29T11:50:37Z) - Anatomy-aware 3D Human Pose Estimation with Bone-based Pose
Decomposition [92.99291528676021]
Instead of directly regressing the 3D joint locations, we decompose the task into bone direction prediction and bone length prediction.
Our motivation is the fact that the bone lengths of a human skeleton remain consistent across time.
Our full model outperforms the previous best results on Human3.6M and MPI-INF-3DHP datasets.
arXiv Detail & Related papers (2020-02-24T15:49:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.