An empirical study of using radiology reports and images to improve ICU
mortality prediction
- URL: http://arxiv.org/abs/2307.07513v1
- Date: Tue, 20 Jun 2023 15:43:28 GMT
- Title: An empirical study of using radiology reports and images to improve ICU
mortality prediction
- Authors: Mingquan Lin, Song Wang, Ying Ding, Lihui Zhao, Fei Wang, Yifan Peng
- Abstract summary: We build a deep learning based survival prediction model with multi-modality data to predict ICU mortality.
We use the Medical Information Mart for Intensive Care IV (MIMIC-IV) dataset to evaluate the proposed model.
- Score: 21.99553011832319
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Background: The predictive Intensive Care Unit (ICU) scoring system plays an
important role in ICU management because it predicts important outcomes,
especially mortality. Many scoring systems have been developed and used in the
ICU. These scoring systems are primarily based on the structured clinical data
in the electronic health record (EHR), which may suffer the loss of important
clinical information in the narratives and images. Methods: In this work, we
build a deep learning based survival prediction model with multi-modality data
to predict ICU mortality. Four sets of features are investigated: (1)
physiological measurements of Simplified Acute Physiology Score (SAPS) II, (2)
common thorax diseases pre-defined by radiologists, (3) BERT-based text
representations, and (4) chest X-ray image features. We use the Medical
Information Mart for Intensive Care IV (MIMIC-IV) dataset to evaluate the
proposed model. Results: Our model achieves the average C-index of 0.7829 (95%
confidence interval, 0.7620-0.8038), which substantially exceeds that of the
baseline with SAPS-II features (0.7470 (0.7263-0.7676)). Ablation studies
further demonstrate the contributions of pre-defined labels (2.00%), text
features (2.44%), and image features (2.82%).
Related papers
- Advancements In Heart Disease Prediction: A Machine Learning Approach For Early Detection And Risk Assessment [0.0]
This paper comprehends, assess, and analyze the role, relevance, and efficiency of machine learning models in predicting heart disease risks using clinical data.
The Support Vector Machine (SVM) demonstrates the highest accuracy at 91.51%, confirming its superiority among the evaluated models in terms of predictive capability.
arXiv Detail & Related papers (2024-10-16T22:32:19Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.
Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
This paper uses the MIMIC-IV dataset to examine the fairness and bias in an XGBoost binary classification model predicting the ICU length of stay.
The research reveals class imbalances in the dataset across demographic attributes and employs data preprocessing and feature extraction.
The paper concludes with recommendations for fairness-aware machine learning techniques for mitigating biases and the need for collaborative efforts among healthcare professionals and data scientists.
arXiv Detail & Related papers (2023-12-31T16:01:48Z) - FineEHR: Refine Clinical Note Representations to Improve Mortality
Prediction [3.9026461169566673]
Large-scale electronic health records provide machine learning models with an abundance of clinical text and vital sign data.
Despite the emergence of advanced Natural Language Processing (NLP) algorithms for clinical note analysis, the complex textual structure and noise present in raw clinical data have posed significant challenges.
We propose FINEEHR, a system that utilizes two representation learning techniques, namely metric learning and fine-tuning, to refine clinical note embeddings.
arXiv Detail & Related papers (2023-04-24T02:42:52Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - Mortality Prediction with Adaptive Feature Importance Recalibration for
Peritoneal Dialysis Patients: a deep-learning-based study on a real-world
longitudinal follow-up dataset [19.7915762858399]
Peritoneal Dialysis (PD) is one of the most widely used life-supporting therapies for patients with End-Stage Renal Disease (ESRD)
Here, our objective is to develop a deep learning model for a real-time, individualized, and interpretable mortality prediction model - AICare.
This study has collected 13,091 clinical follow-up visits and demographic data of 656 PD patients.
arXiv Detail & Related papers (2023-01-17T13:17:54Z) - Integrating Physiological Time Series and Clinical Notes with
Transformer for Early Prediction of Sepsis [10.791880225915255]
Sepsis is a leading cause of death in the Intensive Care Units (ICU)
We propose a multimodal Transformer model for early sepsis prediction.
We use the physiological time series data and clinical notes for each patient within $36$ hours of ICU admission.
arXiv Detail & Related papers (2022-03-28T03:19:03Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
We propose a new method that uses medical text of Electronic Health Records for prediction.
We represent discharge summaries of patients with multiview graphs enhanced by an external knowledge graph.
Experimental results prove the effectiveness of our method, yielding state-of-the-art performance.
arXiv Detail & Related papers (2021-12-19T01:45:57Z) - Improving Early Sepsis Prediction with Multi Modal Learning [5.129463113166068]
Clinical text provides essential information to estimate the severity of sepsis.
We employ state-of-the-art NLP models such as BERT and a highly specialized NLP model in Amazon Comprehend Medical to represent the text.
Our methods significantly outperforms a clinical criteria suggested by experts, qSOFA, as well as the winning model of the PhysioNet Computing in Cardiology Challenge for predicting Sepsis.
arXiv Detail & Related papers (2021-07-23T09:25:31Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
We propose a multi-task recurrent neural network with attention mechanism for predicting cardiovascular events from electronic health records.
The proposed approach is compared to a standard clinical risk predictor (QRISK) and machine learning alternatives using 5-year data from a NHS Foundation Trust.
arXiv Detail & Related papers (2020-07-16T17:43:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.