Computing the gradients with respect to all parameters of a quantum neural network using a single circuit
- URL: http://arxiv.org/abs/2307.08167v4
- Date: Thu, 30 Jan 2025 10:10:55 GMT
- Title: Computing the gradients with respect to all parameters of a quantum neural network using a single circuit
- Authors: Guang Ping He,
- Abstract summary: We propose an approach to compute all gradients using a single circuit only.
We experimentally validate our approach on both quantum simulators and IBM's real quantum hardware.
- Score: 0.0
- License:
- Abstract: Finding gradients is a crucial step in training machine learning models. For quantum neural networks, computing gradients using the parameter-shift rule requires calculating the cost function twice for each adjustable parameter in the network. When the total number of parameters is large, the quantum circuit must be repeatedly adjusted and executed, leading to significant computational overhead. Here we propose an approach to compute all gradients using a single circuit only, significantly reducing both the circuit depth and the number of classical registers required. We experimentally validate our approach on both quantum simulators and IBM's real quantum hardware, demonstrating that our method significantly reduces circuit compilation time compared to the conventional approach, resulting in a substantial speedup in total runtime.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Backpropagation scaling in parameterised quantum circuits [0.0]
We introduce circuits that are not known to be classically simulable and admit gradient estimation with significantly fewer circuits.
Specifically, these circuits allow for fast estimation of the gradient, higher order partial derivatives and the Fisher information matrix.
In a toy classification problem on 16 qubits, such circuits show competitive performance with other methods, while reducing the training cost by about two orders of magnitude.
arXiv Detail & Related papers (2023-06-26T18:00:09Z) - Approximate Quantum Compiling for Quantum Simulation: A Tensor Network based approach [1.237454174824584]
We introduce AQCtensor, a novel algorithm to produce short-depth quantum circuits from Matrix Product States (MPS)
Our approach is specifically tailored to the preparation of quantum states generated from the time evolution of quantum many-body Hamiltonians.
For simulation problems on 100 qubits, we show that AQCtensor achieves at least an order of magnitude reduction in the depth of the resulting optimized circuit.
arXiv Detail & Related papers (2023-01-20T14:40:29Z) - Accelerating the training of single-layer binary neural networks using
the HHL quantum algorithm [58.720142291102135]
We show that useful information can be extracted from the quantum-mechanical implementation of Harrow-Hassidim-Lloyd (HHL)
This paper shows, however, that useful information can be extracted from the quantum-mechanical implementation of HHL, and used to reduce the complexity of finding the solution on the classical side.
arXiv Detail & Related papers (2022-10-23T11:58:05Z) - Escaping from the Barren Plateau via Gaussian Initializations in Deep Variational Quantum Circuits [63.83649593474856]
Variational quantum circuits have been widely employed in quantum simulation and quantum machine learning in recent years.
However, quantum circuits with random structures have poor trainability due to the exponentially vanishing gradient with respect to the circuit depth and the qubit number.
This result leads to a general standpoint that deep quantum circuits would not be feasible for practical tasks.
arXiv Detail & Related papers (2022-03-17T15:06:40Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
We show that conditions amenable to classical trainability via gradient descent coincide with those necessary for efficiently solving quantum linear systems.
We numerically demonstrate that the MNIST image dataset satisfies such conditions.
We provide empirical evidence for $O(log n)$ training of a convolutional neural network with pooling.
arXiv Detail & Related papers (2021-07-19T23:41:03Z) - Fast Swapping in a Quantum Multiplier Modelled as a Queuing Network [64.1951227380212]
We propose that quantum circuits can be modeled as queuing networks.
Our method is scalable and has the potential speed and precision necessary for large scale quantum circuit compilation.
arXiv Detail & Related papers (2021-06-26T10:55:52Z) - Optimal qubit assignment and routing via integer programming [0.22940141855172028]
We consider the problem of mapping a logical quantum circuit onto a given hardware with limited two-qubit connectivity.
We model this problem as an integer linear program, using a network flow formulation with binary variables.
We consider several cost functions: an approximation of the fidelity of the circuit, its total depth, and a measure of cross-talk.
arXiv Detail & Related papers (2021-06-11T15:02:26Z) - Ps and Qs: Quantization-aware pruning for efficient low latency neural
network inference [56.24109486973292]
We study the interplay between pruning and quantization during the training of neural networks for ultra low latency applications.
We find that quantization-aware pruning yields more computationally efficient models than either pruning or quantization alone for our task.
arXiv Detail & Related papers (2021-02-22T19:00:05Z) - Layerwise learning for quantum neural networks [7.2237324920669055]
We show a layerwise learning strategy for parametrized quantum circuits.
The circuit depth is incrementally grown during optimization, and only subsets of parameters are updated in each training step.
We demonstrate our approach on an image-classification task on handwritten digits, and show that layerwise learning attains an 8% lower generalization error on average.
arXiv Detail & Related papers (2020-06-26T10:44:46Z) - Improved quantum circuits for elliptic curve discrete logarithms [6.058525641792685]
We present improved quantum circuits for elliptic curve scalar multiplication.
We optimize low-level components such as reversible integer and modular arithmetic.
We provide a full implementation of point addition in the Q# quantum programming language.
arXiv Detail & Related papers (2020-01-27T04:08:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.