Directed Test Program Generation for JIT Compiler Bug Localization
- URL: http://arxiv.org/abs/2307.08885v1
- Date: Mon, 17 Jul 2023 22:43:02 GMT
- Title: Directed Test Program Generation for JIT Compiler Bug Localization
- Authors: HeuiChan Lim and Saumya Debray
- Abstract summary: Bug localization techniques for Just-in-Time (JIT) compilers are based on analyzing the execution behaviors of the target JIT compiler on a set of test programs generated for this purpose.
This paper proposes a novel technique for automatic test program generation for JIT compiler bug localization.
- Score: 3.626013617212667
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bug localization techniques for Just-in-Time (JIT) compilers are based on
analyzing the execution behaviors of the target JIT compiler on a set of test
programs generated for this purpose; characteristics of these test inputs can
significantly impact the accuracy of bug localization. However, current
approaches for automatic test program generation do not work well for bug
localization in JIT compilers. This paper proposes a novel technique for
automatic test program generation for JIT compiler bug localization that is
based on two key insights: (1) the generated test programs should contain both
passing inputs (which do not trigger the bug) and failing inputs (which trigger
the bug); and (2) the passing inputs should be as similar as possible to the
initial seed input, while the failing programs should be as different as
possible from it. We use a structural analysis of the seed program to determine
which parts of the code should be mutated for each of the passing and failing
cases. Experiments using a prototype implementation indicate that test inputs
generated using our approach result in significantly improved bug localization
results than existing approaches.
Related papers
- Automatic Build Repair for Test Cases using Incompatible Java Versions [7.4881561767138365]
We introduce an approach to repair test cases of Java projects by performing dependency minimization.
Unlike existing state-of-the-art techniques, our approach performs at source-level, which allows compile-time errors to be fixed.
arXiv Detail & Related papers (2024-04-27T07:55:52Z) - Evolutionary Generative Fuzzing for Differential Testing of the Kotlin
Compiler [14.259471945857431]
We investigate the effectiveness of differential testing in finding bugs within the Kotlin compilers developed at JetBrains.
We propose a black-box generative approach that creates input programs for the K1 and K2 compilers.
Our case study shows that the proposed approach effectively detects bugs in K1 and K2; these bugs have been confirmed and (some) fixed by JetBrains developers.
arXiv Detail & Related papers (2024-01-12T16:01:12Z) - Enriching Automatic Test Case Generation by Extracting Relevant Test
Inputs from Bug Reports [8.85274953789614]
name is a technique for exploring bug reports to identify input values that can be fed to automatic test generation tools.
For Defects4J projects, our study has shown that name successfully extracted 68.68% of relevant inputs when using regular expression in its approach.
arXiv Detail & Related papers (2023-12-22T18:19:33Z) - Automatic Generation of Test Cases based on Bug Reports: a Feasibility
Study with Large Language Models [4.318319522015101]
Existing approaches produce test cases that either can be qualified as simple (e.g. unit tests) or that require precise specifications.
Most testing procedures still rely on test cases written by humans to form test suites.
We investigate the feasibility of performing this generation by leveraging large language models (LLMs) and using bug reports as inputs.
arXiv Detail & Related papers (2023-10-10T05:30:12Z) - RAP-Gen: Retrieval-Augmented Patch Generation with CodeT5 for Automatic
Program Repair [75.40584530380589]
We propose a novel Retrieval-Augmented Patch Generation framework (RAP-Gen)
RAP-Gen explicitly leveraging relevant fix patterns retrieved from a list of previous bug-fix pairs.
We evaluate RAP-Gen on three benchmarks in two programming languages, including the TFix benchmark in JavaScript, and Code Refinement and Defects4J benchmarks in Java.
arXiv Detail & Related papers (2023-09-12T08:52:56Z) - Teaching Large Language Models to Self-Debug [62.424077000154945]
Large language models (LLMs) have achieved impressive performance on code generation.
We propose Self- Debugging, which teaches a large language model to debug its predicted program via few-shot demonstrations.
arXiv Detail & Related papers (2023-04-11T10:43:43Z) - BigIssue: A Realistic Bug Localization Benchmark [89.8240118116093]
BigIssue is a benchmark for realistic bug localization.
We provide a general benchmark with a diversity of real and synthetic Java bugs.
We hope to advance the state of the art in bug localization, in turn improving APR performance and increasing its applicability to the modern development cycle.
arXiv Detail & Related papers (2022-07-21T20:17:53Z) - Fault-Aware Neural Code Rankers [64.41888054066861]
We propose fault-aware neural code rankers that can predict the correctness of a sampled program without executing it.
Our fault-aware rankers can significantly increase the pass@1 accuracy of various code generation models.
arXiv Detail & Related papers (2022-06-04T22:01:05Z) - Natural Language to Code Translation with Execution [82.52142893010563]
Execution result--minimum Bayes risk decoding for program selection.
We show that it improves the few-shot performance of pretrained code models on natural-language-to-code tasks.
arXiv Detail & Related papers (2022-04-25T06:06:08Z) - Zero-Shot Cross-lingual Semantic Parsing [56.95036511882921]
We study cross-lingual semantic parsing as a zero-shot problem without parallel data for 7 test languages.
We propose a multi-task encoder-decoder model to transfer parsing knowledge to additional languages using only English-Logical form paired data.
Our system frames zero-shot parsing as a latent-space alignment problem and finds that pre-trained models can be improved to generate logical forms with minimal cross-lingual transfer penalty.
arXiv Detail & Related papers (2021-04-15T16:08:43Z) - Configuring Test Generators using Bug Reports: A Case Study of GCC
Compiler and Csmith [2.1016374925364616]
This paper uses the code snippets in the bug reports to guide the test generation.
We evaluate this approach on eight versions of GCC.
We find that our approach provides higher coverage and triggers more miscompilation failures than the state-of-the-art test generation techniques for GCC.
arXiv Detail & Related papers (2020-12-19T11:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.