Machine Learning for SAT: Restricted Heuristics and New Graph
Representations
- URL: http://arxiv.org/abs/2307.09141v1
- Date: Tue, 18 Jul 2023 10:46:28 GMT
- Title: Machine Learning for SAT: Restricted Heuristics and New Graph
Representations
- Authors: Mikhail Shirokikh, Ilya Shenbin, Anton Alekseev, Sergey Nikolenko
- Abstract summary: SAT is a fundamental NP-complete problem with many applications, including automated scheduling.
To solve large instances, SAT solvers have to rely on Booleans, e.g., choosing a branching variable in DPLL and CDCL solvers.
We suggest a strategy of making a few initial steps with a trained ML model and then releasing control to classical runtimes.
- Score: 0.8870188183999854
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Boolean satisfiability (SAT) is a fundamental NP-complete problem with many
applications, including automated planning and scheduling. To solve large
instances, SAT solvers have to rely on heuristics, e.g., choosing a branching
variable in DPLL and CDCL solvers. Such heuristics can be improved with machine
learning (ML) models; they can reduce the number of steps but usually hinder
the running time because useful models are relatively large and slow. We
suggest the strategy of making a few initial steps with a trained ML model and
then releasing control to classical heuristics; this simplifies cold start for
SAT solving and can decrease both the number of steps and overall runtime, but
requires a separate decision of when to release control to the solver.
Moreover, we introduce a modification of Graph-Q-SAT tailored to SAT problems
converted from other domains, e.g., open shop scheduling problems. We validate
the feasibility of our approach with random and industrial SAT problems.
Related papers
- Self-Satisfied: An end-to-end framework for SAT generation and prediction [0.7340017786387768]
We introduce hardware accelerated algorithms for fast SAT problem generation and a geometric SAT encoding.
These advances allow us to scale our approach to SAT problems with thousands of variables and tens of thousands of clauses.
A fundamental aspect of our work concerns the very nature of SAT data and its suitability for training machine learning models.
arXiv Detail & Related papers (2024-10-18T22:25:54Z) - GraSS: Combining Graph Neural Networks with Expert Knowledge for SAT Solver Selection [45.222591894755105]
We present GraSS, a novel approach for automatic SAT solver selection based on tripartite graph representations of instances.
We enrich the graph representation with domain-specific decisions, such as novel node feature design.
We demonstrate that this combination of raw representations and domain-specific choices leads to improvements in runtime.
arXiv Detail & Related papers (2024-05-17T18:00:50Z) - A hybrid Quantum proposal to deal with 3-SAT problem [75.38606213726906]
This paper presents and describes a hybrid quantum computing strategy for solving 3-SAT problems.
The performance of this approximation has been tested over a set of representative scenarios when dealing with 3-SAT from the quantum computing perspective.
arXiv Detail & Related papers (2023-06-07T12:19:22Z) - SatLM: Satisfiability-Aided Language Models Using Declarative Prompting [68.40726892904286]
We propose a new satisfiability-aided language modeling (SatLM) approach for improving the reasoning capabilities of large language models (LLMs)
We use an LLM to generate a declarative task specification rather than an imperative program and leverage an off-the-shelf automated theorem prover to derive the final answer.
We evaluate SATLM on 8 different datasets and show that it consistently outperforms program-aided LMs in the imperative paradigm.
arXiv Detail & Related papers (2023-05-16T17:55:51Z) - W2SAT: Learning to generate SAT instances from Weighted Literal Incidence Graphs [11.139131079925113]
W2SAT is a framework to generate SAT formulas by learning intrinsic structures and properties from given real-world/industrial instances.
We introduce a novel SAT representation called Weighted Literal Incidence Graph (WLIG), which exhibits strong representation ability and generalizability.
Decoding from WLIG into SAT problems is then modeled as finding overlapping cliques with a novel hill-climbing optimization method.
arXiv Detail & Related papers (2023-02-01T06:30:41Z) - Estimating the hardness of SAT encodings for Logical Equivalence
Checking of Boolean circuits [58.83758257568434]
We show that the hardness of SAT encodings for LEC instances can be estimated textitw.r.t some SAT partitioning.
The paper proposes several methods for constructing partitionings, which, when used in practice, allow one to estimate the hardness of SAT encodings for LEC with good accuracy.
arXiv Detail & Related papers (2022-10-04T09:19:13Z) - DeepSAT: An EDA-Driven Learning Framework for SAT [9.111341161918375]
We present DeepSAT, a novel end-to-end learning framework for the Boolean satisfiability (SAT) problem.
DeepSAT achieves significant accuracy improvements over state-of-the-art learning-based SAT solutions.
arXiv Detail & Related papers (2022-05-27T03:20:42Z) - Machine Learning Methods in Solving the Boolean Satisfiability Problem [72.21206588430645]
The paper reviews the recent literature on solving the Boolean satisfiability problem (SAT) with machine learning techniques.
We examine the evolving ML-SAT solvers from naive classifiers with handcrafted features to the emerging end-to-end SAT solvers such as NeuroSAT.
arXiv Detail & Related papers (2022-03-02T05:14:12Z) - Transformer-based Machine Learning for Fast SAT Solvers and Logic
Synthesis [63.53283025435107]
CNF-based SAT and MaxSAT solvers are central to logic synthesis and verification systems.
In this work, we propose a one-shot model derived from the Transformer architecture to solve the MaxSAT problem.
arXiv Detail & Related papers (2021-07-15T04:47:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.