ProtoCaps: A Fast and Non-Iterative Capsule Network Routing Method
- URL: http://arxiv.org/abs/2307.09944v2
- Date: Fri, 8 Mar 2024 09:54:12 GMT
- Title: ProtoCaps: A Fast and Non-Iterative Capsule Network Routing Method
- Authors: Miles Everett, Mingjun Zhong and Georgios Leontidis
- Abstract summary: We introduce a novel, non-iterative routing mechanism for Capsule Networks.
We harness a shared Capsule subspace, negating the need to project each lower-level Capsule to each higher-level Capsule.
Our findings underscore the potential of our proposed methodology in enhancing the operational efficiency and performance of Capsule Networks.
- Score: 6.028175460199198
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Capsule Networks have emerged as a powerful class of deep learning
architectures, known for robust performance with relatively few parameters
compared to Convolutional Neural Networks (CNNs). However, their inherent
efficiency is often overshadowed by their slow, iterative routing mechanisms
which establish connections between Capsule layers, posing computational
challenges resulting in an inability to scale. In this paper, we introduce a
novel, non-iterative routing mechanism, inspired by trainable prototype
clustering. This innovative approach aims to mitigate computational complexity,
while retaining, if not enhancing, performance efficacy. Furthermore, we
harness a shared Capsule subspace, negating the need to project each
lower-level Capsule to each higher-level Capsule, thereby significantly
reducing memory requisites during training. Our approach demonstrates superior
results compared to the current best non-iterative Capsule Network and tests on
the Imagewoof dataset, which is too computationally demanding to handle
efficiently by iterative approaches. Our findings underscore the potential of
our proposed methodology in enhancing the operational efficiency and
performance of Capsule Networks, paving the way for their application in
increasingly complex computational scenarios. Code is available at
https://github.com/mileseverett/ProtoCaps.
Related papers
- Hierarchical Object-Centric Learning with Capsule Networks [0.0]
Capsule networks (CapsNets) were introduced to address convolutional neural networks limitations.
This thesis investigates the intriguing aspects of CapsNets and focuses on three key questions to unlock their full potential.
arXiv Detail & Related papers (2024-05-30T09:10:33Z) - Pushing the Efficiency Limit Using Structured Sparse Convolutions [82.31130122200578]
We propose Structured Sparse Convolution (SSC), which leverages the inherent structure in images to reduce the parameters in the convolutional filter.
We show that SSC is a generalization of commonly used layers (depthwise, groupwise and pointwise convolution) in efficient architectures''
Architectures based on SSC achieve state-of-the-art performance compared to baselines on CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet classification benchmarks.
arXiv Detail & Related papers (2022-10-23T18:37:22Z) - Towards Efficient Capsule Networks [7.1577508803778045]
Capsule Networks were introduced to enhance explainability of a model, where each capsule is an explicit representation of an object or its parts.
We show how pruning with Capsule Network achieves high generalization with less memory requirements, computational effort, and inference and training time.
arXiv Detail & Related papers (2022-08-19T08:03:25Z) - Routing with Self-Attention for Multimodal Capsule Networks [108.85007719132618]
We present a new multimodal capsule network that allows us to leverage the strength of capsules in the context of a multimodal learning framework.
To adapt the capsules to large-scale input data, we propose a novel routing by self-attention mechanism that selects relevant capsules.
This allows not only for robust training with noisy video data, but also to scale up the size of the capsule network compared to traditional routing methods.
arXiv Detail & Related papers (2021-12-01T19:01:26Z) - CATRO: Channel Pruning via Class-Aware Trace Ratio Optimization [61.71504948770445]
We propose a novel channel pruning method via Class-Aware Trace Ratio Optimization (CATRO) to reduce the computational burden and accelerate the model inference.
We show that CATRO achieves higher accuracy with similar cost or lower cost with similar accuracy than other state-of-the-art channel pruning algorithms.
Because of its class-aware property, CATRO is suitable to prune efficient networks adaptively for various classification subtasks, enhancing handy deployment and usage of deep networks in real-world applications.
arXiv Detail & Related papers (2021-10-21T06:26:31Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
Deep Neural Network (DNN) models are essential for practical applications, especially for resource limited devices.
Previous unstructured or structured weight pruning methods can hardly truly accelerate inference.
We propose a generalized weight unification framework at a hardware compatible micro-structured level to achieve high amount of compression and acceleration.
arXiv Detail & Related papers (2021-06-15T17:22:59Z) - Routing Towards Discriminative Power of Class Capsules [7.347145775695176]
We propose a routing algorithm that incorporates a regularized quadratic programming problem which can be solved efficiently.
We conduct experiments on MNIST, MNIST-Fashion, and CIFAR-10 and show competitive classification results compared to existing capsule networks.
arXiv Detail & Related papers (2021-03-07T05:49:38Z) - Efficient-CapsNet: Capsule Network with Self-Attention Routing [0.0]
Deep convolutional neural networks make extensive use of data augmentation techniques and layers with a high number of feature maps to embed object transformations.
capsule networks are a promising solution to extend current convolutional networks and endow artificial visual perception with a process to encode more efficiently all feature affine transformations.
In this paper, we investigate the efficiency of capsule networks and, pushing their capacity to the limits with an extreme architecture with barely 160K parameters, we prove that the proposed architecture is still able to achieve state-of-the-art results.
arXiv Detail & Related papers (2021-01-29T09:56:44Z) - Wasserstein Routed Capsule Networks [90.16542156512405]
We propose a new parameter efficient capsule architecture, that is able to tackle complex tasks.
We show that our network is able to substantially outperform other capsule approaches by over 1.2 % on CIFAR-10.
arXiv Detail & Related papers (2020-07-22T14:38:05Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
We train a graph convolutional network to fit the performance of sampled sub-networks.
With this strategy, we achieve a higher rank correlation coefficient in the selected set of candidates.
arXiv Detail & Related papers (2020-04-17T19:12:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.