VITS : Variational Inference Thompson Sampling for contextual bandits
- URL: http://arxiv.org/abs/2307.10167v4
- Date: Sat, 20 Jul 2024 14:38:26 GMT
- Title: VITS : Variational Inference Thompson Sampling for contextual bandits
- Authors: Pierre Clavier, Tom Huix, Alain Durmus,
- Abstract summary: We introduce and analyze a variant of the Thompson sampling (TS) algorithm for contextual bandits.
We propose a new algorithm, Varational Inference Thompson sampling VITS, based on Gaussian Variational Inference.
We show that VITS achieves a sub-linear regret bound of the same order in the dimension and number of round as traditional TS for linear contextual bandit.
- Score: 10.028119153832346
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce and analyze a variant of the Thompson sampling (TS) algorithm for contextual bandits. At each round, traditional TS requires samples from the current posterior distribution, which is usually intractable. To circumvent this issue, approximate inference techniques can be used and provide samples with distribution close to the posteriors. However, current approximate techniques yield to either poor estimation (Laplace approximation) or can be computationally expensive (MCMC methods, Ensemble sampling...). In this paper, we propose a new algorithm, Varational Inference Thompson sampling VITS, based on Gaussian Variational Inference. This scheme provides powerful posterior approximations which are easy to sample from, and is computationally efficient, making it an ideal choice for TS. In addition, we show that VITS achieves a sub-linear regret bound of the same order in the dimension and number of round as traditional TS for linear contextual bandit. Finally, we demonstrate experimentally the effectiveness of VITS on both synthetic and real world datasets.
Related papers
- Thompson Sampling for High-Dimensional Sparse Linear Contextual Bandits [17.11922027966447]
This work provides theoretical guarantees of Thompson sampling in high dimensional and sparse contextual bandits.
For faster computation, we use spike-and-slab prior to model the unknown parameter and variational inference instead of MCMC.
arXiv Detail & Related papers (2022-11-11T02:23:39Z) - A Provably Efficient Model-Free Posterior Sampling Method for Episodic
Reinforcement Learning [50.910152564914405]
Existing posterior sampling methods for reinforcement learning are limited by being model-based or lack worst-case theoretical guarantees beyond linear MDPs.
This paper proposes a new model-free formulation of posterior sampling that applies to more general episodic reinforcement learning problems with theoretical guarantees.
arXiv Detail & Related papers (2022-08-23T12:21:01Z) - Langevin Monte Carlo for Contextual Bandits [72.00524614312002]
Langevin Monte Carlo Thompson Sampling (LMC-TS) is proposed to directly sample from the posterior distribution in contextual bandits.
We prove that the proposed algorithm achieves the same sublinear regret bound as the best Thompson sampling algorithms for a special case of contextual bandits.
arXiv Detail & Related papers (2022-06-22T17:58:23Z) - Algorithms for Adaptive Experiments that Trade-off Statistical Analysis
with Reward: Combining Uniform Random Assignment and Reward Maximization [50.725191156128645]
Multi-armed bandit algorithms like Thompson Sampling can be used to conduct adaptive experiments.
We present simulations for 2-arm experiments that explore two algorithms that combine the benefits of uniform randomization for statistical analysis.
arXiv Detail & Related papers (2021-12-15T22:11:58Z) - A Unifying Theory of Thompson Sampling for Continuous Risk-Averse
Bandits [91.3755431537592]
This paper unifies the analysis of risk-averse Thompson sampling algorithms for the multi-armed bandit problem.
Using the contraction principle in the theory of large deviations, we prove novel concentration bounds for continuous risk functionals.
We show that a wide class of risk functionals as well as "nice" functions of them satisfy the continuity condition.
arXiv Detail & Related papers (2021-08-25T17:09:01Z) - Diffusion Approximations for Thompson Sampling [4.390757904176221]
We show that the dynamics of Thompson sampling evolve according to discrete versions of SDE's horizon and ODE's.
Our weak convergence theory is developed from first principles using the Continuous Mapping Theorem.
arXiv Detail & Related papers (2021-05-19T16:28:01Z) - Doubly-Adaptive Thompson Sampling for Multi-Armed and Contextual Bandits [28.504921333436833]
We propose a variant of a Thompson sampling based algorithm that adaptively re-weighs the terms of a doubly robust estimator on the true mean reward of each arm.
The proposed algorithm matches the optimal (minimax) regret rate and its empirical evaluation in a semi-synthetic experiment.
We extend this approach to contextual bandits, where there are more sources of bias present apart from the adaptive data collection.
arXiv Detail & Related papers (2021-02-25T22:29:25Z) - Analysis and Design of Thompson Sampling for Stochastic Partial
Monitoring [91.22679787578438]
We present a novel Thompson-sampling-based algorithm for partial monitoring.
We prove that the new algorithm achieves the logarithmic problem-dependent expected pseudo-regret $mathrmO(log T)$ for a linearized variant of the problem with local observability.
arXiv Detail & Related papers (2020-06-17T05:48:33Z) - On Thompson Sampling with Langevin Algorithms [106.78254564840844]
Thompson sampling for multi-armed bandit problems enjoys favorable performance in both theory and practice.
It suffers from a significant limitation computationally, arising from the need for samples from posterior distributions at every iteration.
We propose two Markov Chain Monte Carlo (MCMC) methods tailored to Thompson sampling to address this issue.
arXiv Detail & Related papers (2020-02-23T22:35:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.