Confidence Estimation Using Unlabeled Data
- URL: http://arxiv.org/abs/2307.10440v1
- Date: Wed, 19 Jul 2023 20:11:30 GMT
- Title: Confidence Estimation Using Unlabeled Data
- Authors: Chen Li, Xiaoling Hu, Chao Chen
- Abstract summary: We propose the first confidence estimation method for a semi-supervised setting, when most training labels are unavailable.
We use training consistency as a surrogate function and propose a consistency ranking loss for confidence estimation.
On both image classification and segmentation tasks, our method achieves state-of-the-art performances in confidence estimation.
- Score: 12.512654188295764
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Overconfidence is a common issue for deep neural networks, limiting their
deployment in real-world applications. To better estimate confidence, existing
methods mostly focus on fully-supervised scenarios and rely on training labels.
In this paper, we propose the first confidence estimation method for a
semi-supervised setting, when most training labels are unavailable. We
stipulate that even with limited training labels, we can still reasonably
approximate the confidence of model on unlabeled samples by inspecting the
prediction consistency through the training process. We use training
consistency as a surrogate function and propose a consistency ranking loss for
confidence estimation. On both image classification and segmentation tasks, our
method achieves state-of-the-art performances in confidence estimation.
Furthermore, we show the benefit of the proposed method through a downstream
active learning task. The code is available at
https://github.com/TopoXLab/consistency-ranking-loss
Related papers
- Uncertainty-aware self-training with expectation maximization basis transformation [9.7527450662978]
We propose a new self-training framework to combine uncertainty information of both model and dataset.
Specifically, we propose to use Expectation-Maximization (EM) to smooth the labels and comprehensively estimate the uncertainty information.
arXiv Detail & Related papers (2024-05-02T11:01:31Z) - Binary Classification with Confidence Difference [100.08818204756093]
This paper delves into a novel weakly supervised binary classification problem called confidence-difference (ConfDiff) classification.
We propose a risk-consistent approach to tackle this problem and show that the estimation error bound the optimal convergence rate.
We also introduce a risk correction approach to mitigate overfitting problems, whose consistency and convergence rate are also proven.
arXiv Detail & Related papers (2023-10-09T11:44:50Z) - Towards Semi-Supervised Deep Facial Expression Recognition with An
Adaptive Confidence Margin [92.76372026435858]
We learn an Adaptive Confidence Margin (Ada-CM) to fully leverage all unlabeled data for semi-supervised deep facial expression recognition.
All unlabeled samples are partitioned into two subsets by comparing their confidence scores with the adaptively learned confidence margin.
Our method achieves state-of-the-art performance, especially surpassing fully-supervised baselines in a semi-supervised manner.
arXiv Detail & Related papers (2022-03-23T11:43:29Z) - An evaluation of word-level confidence estimation for end-to-end
automatic speech recognition [70.61280174637913]
We investigate confidence estimation for end-to-end automatic speech recognition (ASR)
We provide an extensive benchmark of popular confidence methods on four well-known speech datasets.
Our results suggest a strong baseline can be obtained by scaling the logits by a learnt temperature.
arXiv Detail & Related papers (2021-01-14T09:51:59Z) - Two-phase Pseudo Label Densification for Self-training based Domain
Adaptation [93.03265290594278]
We propose a novel Two-phase Pseudo Label Densification framework, referred to as TPLD.
In the first phase, we use sliding window voting to propagate the confident predictions, utilizing intrinsic spatial-correlations in the images.
In the second phase, we perform a confidence-based easy-hard classification.
To ease the training process and avoid noisy predictions, we introduce the bootstrapping mechanism to the original self-training loss.
arXiv Detail & Related papers (2020-12-09T02:35:25Z) - Uncertainty-aware Self-training for Text Classification with Few Labels [54.13279574908808]
We study self-training as one of the earliest semi-supervised learning approaches to reduce the annotation bottleneck.
We propose an approach to improve self-training by incorporating uncertainty estimates of the underlying neural network.
We show our methods leveraging only 20-30 labeled samples per class for each task for training and for validation can perform within 3% of fully supervised pre-trained language models.
arXiv Detail & Related papers (2020-06-27T08:13:58Z) - Binary Classification from Positive Data with Skewed Confidence [85.18941440826309]
Positive-confidence (Pconf) classification is a promising weakly-supervised learning method.
In practice, the confidence may be skewed by bias arising in an annotation process.
We introduce the parameterized model of the skewed confidence, and propose the method for selecting the hyper parameter.
arXiv Detail & Related papers (2020-01-29T00:04:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.