Neuromorphic Online Learning for Spatiotemporal Patterns with a
Forward-only Timeline
- URL: http://arxiv.org/abs/2307.11314v1
- Date: Fri, 21 Jul 2023 02:47:03 GMT
- Title: Neuromorphic Online Learning for Spatiotemporal Patterns with a
Forward-only Timeline
- Authors: Zhenhang Zhang, Jingang Jin, Haowen Fang, Qinru Qiu
- Abstract summary: Spiking neural networks (SNNs) are bio-plausible computing models with high energy efficiency.
Backpropagation Through Time (BPTT) is traditionally used to train SNNs.
We present Spatiotemporal Online Learning for Synaptic Adaptation (SOLSA), specifically designed for online learning of SNNs.
- Score: 5.094970748243019
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking neural networks (SNNs) are bio-plausible computing models with high
energy efficiency. The temporal dynamics of neurons and synapses enable them to
detect temporal patterns and generate sequences. While Backpropagation Through
Time (BPTT) is traditionally used to train SNNs, it is not suitable for online
learning of embedded applications due to its high computation and memory cost
as well as extended latency. Previous works have proposed online learning
algorithms, but they often utilize highly simplified spiking neuron models
without synaptic dynamics and reset feedback, resulting in subpar performance.
In this work, we present Spatiotemporal Online Learning for Synaptic Adaptation
(SOLSA), specifically designed for online learning of SNNs composed of Leaky
Integrate and Fire (LIF) neurons with exponentially decayed synapses and soft
reset. The algorithm not only learns the synaptic weight but also adapts the
temporal filters associated to the synapses. Compared to the BPTT algorithm,
SOLSA has much lower memory requirement and achieves a more balanced temporal
workload distribution. Moreover, SOLSA incorporates enhancement techniques such
as scheduled weight update, early stop training and adaptive synapse filter,
which speed up the convergence and enhance the learning performance. When
compared to other non-BPTT based SNN learning, SOLSA demonstrates an average
learning accuracy improvement of 14.2%. Furthermore, compared to BPTT, SOLSA
achieves a 5% higher average learning accuracy with a 72% reduction in memory
cost.
Related papers
- Online Pseudo-Zeroth-Order Training of Neuromorphic Spiking Neural Networks [69.2642802272367]
Brain-inspired neuromorphic computing with spiking neural networks (SNNs) is a promising energy-efficient computational approach.
Most recent methods leverage spatial and temporal backpropagation (BP), not adhering to neuromorphic properties.
We propose a novel method, online pseudo-zeroth-order (OPZO) training.
arXiv Detail & Related papers (2024-07-17T12:09:00Z) - Towards Memory- and Time-Efficient Backpropagation for Training Spiking
Neural Networks [70.75043144299168]
Spiking Neural Networks (SNNs) are promising energy-efficient models for neuromorphic computing.
We propose the Spatial Learning Through Time (SLTT) method that can achieve high performance while greatly improving training efficiency.
Our method achieves state-of-the-art accuracy on ImageNet, while the memory cost and training time are reduced by more than 70% and 50%, respectively, compared with BPTT.
arXiv Detail & Related papers (2023-02-28T05:01:01Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Online Training Through Time for Spiking Neural Networks [66.7744060103562]
Spiking neural networks (SNNs) are promising brain-inspired energy-efficient models.
Recent progress in training methods has enabled successful deep SNNs on large-scale tasks with low latency.
We propose online training through time (OTTT) for SNNs, which is derived from BPTT to enable forward-in-time learning.
arXiv Detail & Related papers (2022-10-09T07:47:56Z) - An Unsupervised STDP-based Spiking Neural Network Inspired By
Biologically Plausible Learning Rules and Connections [10.188771327458651]
Spike-timing-dependent plasticity (STDP) is a general learning rule in the brain, but spiking neural networks (SNNs) trained with STDP alone is inefficient and perform poorly.
We design an adaptive synaptic filter and introduce the adaptive spiking threshold to enrich the representation ability of SNNs.
Our model achieves the current state-of-the-art performance of unsupervised STDP-based SNNs in the MNIST and FashionMNIST datasets.
arXiv Detail & Related papers (2022-07-06T14:53:32Z) - Accurate online training of dynamical spiking neural networks through
Forward Propagation Through Time [1.8515971640245998]
We show how a recently developed alternative to BPTT can be applied in spiking neural networks.
FPTT attempts to minimize an ongoing dynamically regularized risk on the loss.
We show that SNNs trained with FPTT outperform online BPTT approximations, and approach or exceed offline BPTT accuracy on temporal classification tasks.
arXiv Detail & Related papers (2021-12-20T13:44:20Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z) - Temporal Spike Sequence Learning via Backpropagation for Deep Spiking
Neural Networks [14.992756670960008]
Spiking neural networks (SNNs) are well suited for computation and implementations on energy-efficient event-driven neuromorphic processors.
We present a novel Temporal Spike Sequence Learning Backpropagation (TSSL-BP) method for training deep SNNs.
arXiv Detail & Related papers (2020-02-24T05:49:37Z) - Exploiting Neuron and Synapse Filter Dynamics in Spatial Temporal
Learning of Deep Spiking Neural Network [7.503685643036081]
A bio-plausible SNN model with spatial-temporal property is a complex dynamic system.
We formulate SNN as a network of infinite impulse response (IIR) filters with neuron nonlinearity.
We propose a training algorithm that is capable to learn spatial-temporal patterns by searching for the optimal synapse filter kernels and weights.
arXiv Detail & Related papers (2020-02-19T01:27:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.