CohortGPT: An Enhanced GPT for Participant Recruitment in Clinical Study
- URL: http://arxiv.org/abs/2307.11346v1
- Date: Fri, 21 Jul 2023 04:43:00 GMT
- Title: CohortGPT: An Enhanced GPT for Participant Recruitment in Clinical Study
- Authors: Zihan Guan, Zihao Wu, Zhengliang Liu, Dufan Wu, Hui Ren, Quanzheng Li,
Xiang Li, Ninghao Liu
- Abstract summary: Large Language Models (LLMs) such as ChatGPT have achieved tremendous success in various downstream tasks.
We propose to use a knowledge graph as auxiliary information to guide the LLMs in making predictions.
Our few-shot learning method achieves satisfactory performance compared with fine-tuning strategies.
- Score: 17.96401880059829
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Participant recruitment based on unstructured medical texts such as clinical
notes and radiology reports has been a challenging yet important task for the
cohort establishment in clinical research. Recently, Large Language Models
(LLMs) such as ChatGPT have achieved tremendous success in various downstream
tasks thanks to their promising performance in language understanding,
inference, and generation. It is then natural to test their feasibility in
solving the cohort recruitment task, which involves the classification of a
given paragraph of medical text into disease label(s). However, when applied to
knowledge-intensive problem settings such as medical text classification, where
the LLMs are expected to understand the decision made by human experts and
accurately identify the implied disease labels, the LLMs show a mediocre
performance. A possible explanation is that, by only using the medical text,
the LLMs neglect to use the rich context of additional information that
languages afford. To this end, we propose to use a knowledge graph as auxiliary
information to guide the LLMs in making predictions. Moreover, to further boost
the LLMs adapt to the problem setting, we apply a chain-of-thought (CoT) sample
selection strategy enhanced by reinforcement learning, which selects a set of
CoT samples given each individual medical report. Experimental results and
various ablation studies show that our few-shot learning method achieves
satisfactory performance compared with fine-tuning strategies and gains superb
advantages when the available data is limited. The code and sample dataset of
the proposed CohortGPT model is available at:
https://anonymous.4open.science/r/CohortGPT-4872/
Related papers
- RuleAlign: Making Large Language Models Better Physicians with Diagnostic Rule Alignment [54.91736546490813]
We introduce the RuleAlign framework, designed to align Large Language Models with specific diagnostic rules.
We develop a medical dialogue dataset comprising rule-based communications between patients and physicians.
Experimental results demonstrate the effectiveness of the proposed approach.
arXiv Detail & Related papers (2024-08-22T17:44:40Z) - When Raw Data Prevails: Are Large Language Model Embeddings Effective in Numerical Data Representation for Medical Machine Learning Applications? [8.89829757177796]
We examine the effectiveness of vector representations from last hidden states of Large Language Models for medical diagnostics and prognostics.
We focus on instruction-tuned LLMs in a zero-shot setting to represent abnormal physiological data and evaluate their utilities as feature extractors.
Although findings suggest the raw data features still prevails in medical ML tasks, zero-shot LLM embeddings demonstrate competitive results.
arXiv Detail & Related papers (2024-08-15T03:56:40Z) - Comparative Analysis of Open-Source Language Models in Summarizing Medical Text Data [5.443548415516227]
Large Language Models (LLMs) have demonstrated superior performance in question answering and summarization tasks on unstructured text data.
We propose an evaluation approach to analyze the performance of open-source LLMs for medical summarization tasks.
arXiv Detail & Related papers (2024-05-25T16:16:22Z) - Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
We harness the powerful semantic comprehension and input-agnostic characteristics of Large Language Models (LLMs)
Our research aims to transform existing medication recommendation methodologies using LLMs.
To mitigate this, we have developed a feature-level knowledge distillation technique, which transfers the LLM's proficiency to a more compact model.
arXiv Detail & Related papers (2024-02-05T08:25:22Z) - Adapted Large Language Models Can Outperform Medical Experts in Clinical Text Summarization [8.456700096020601]
Large language models (LLMs) have shown promise in natural language processing (NLP), but their effectiveness on a diverse range of clinical summarization tasks remains unproven.
In this study, we apply adaptation methods to eight LLMs, spanning four distinct clinical summarization tasks.
A clinical reader study with ten physicians evaluates summary, completeness, correctness, and conciseness; in a majority of cases, summaries from our best adapted LLMs are either equivalent (45%) or superior (36%) compared to summaries from medical experts.
arXiv Detail & Related papers (2023-09-14T05:15:01Z) - Aligning Large Language Models for Clinical Tasks [0.0]
Large Language Models (LLMs) have demonstrated remarkable adaptability, showcasing their capacity to excel in tasks for which they were not explicitly trained.
We propose an alignment strategy for medical question-answering, known as 'expand-guess-refine'
A preliminary analysis of this method demonstrated outstanding performance, achieving a score of 70.63% on a subset of questions sourced from the USMLE dataset.
arXiv Detail & Related papers (2023-09-06T10:20:06Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - Are Large Language Models Ready for Healthcare? A Comparative Study on
Clinical Language Understanding [12.128991867050487]
Large language models (LLMs) have made significant progress in various domains, including healthcare.
In this study, we evaluate state-of-the-art LLMs within the realm of clinical language understanding tasks.
arXiv Detail & Related papers (2023-04-09T16:31:47Z) - Does Synthetic Data Generation of LLMs Help Clinical Text Mining? [51.205078179427645]
We investigate the potential of OpenAI's ChatGPT to aid in clinical text mining.
We propose a new training paradigm that involves generating a vast quantity of high-quality synthetic data.
Our method has resulted in significant improvements in the performance of downstream tasks.
arXiv Detail & Related papers (2023-03-08T03:56:31Z) - Retrieval-Augmented and Knowledge-Grounded Language Models for Faithful Clinical Medicine [68.7814360102644]
We propose the Re$3$Writer method with retrieval-augmented generation and knowledge-grounded reasoning.
We demonstrate the effectiveness of our method in generating patient discharge instructions.
arXiv Detail & Related papers (2022-10-23T16:34:39Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.