Two-stage, low noise quantum frequency conversion of single photons from
silicon-vacancy centers in diamond to the telecom C-band
- URL: http://arxiv.org/abs/2307.11389v1
- Date: Fri, 21 Jul 2023 07:00:18 GMT
- Title: Two-stage, low noise quantum frequency conversion of single photons from
silicon-vacancy centers in diamond to the telecom C-band
- Authors: Marlon Sch\"afer, Benjamin Kambs, Dennis Herrmann, Tobias Bauer,
Christoph Becher
- Abstract summary: This work presents a highly efficient, low-noise quantum frequency conversion device for photons emitted by a silicon-vacancy center in diamond to the telecom C-band.
By using a two-stage difference-frequency mixing scheme SPDC noise is circumvented and Raman noise is minimized, resulting in a very low noise rate of $10.4 pm 0.7$ photons per second.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The silicon-vacancy center in diamond holds great promise as a qubit for
quantum communication networks. However, since the optical transitions are
located within the visible red spectral region, quantum frequency conversion to
low-loss telecommunication wavelengths becomes a necessity for its use in
long-range, fiber-linked networks. This work presents a highly efficient,
low-noise quantum frequency conversion device for photons emitted by a
silicon-vacancy (SiV) center in diamond to the telecom C-band. By using a
two-stage difference-frequency mixing scheme SPDC noise is circumvented and
Raman noise is minimized, resulting in a very low noise rate of $10.4 \pm 0.7$
photons per second as well as an overall device efficiency of $35.6\, \%$. By
converting single photons from SiV centers we demonstrate the preservation of
photon statistics upon conversion.
Related papers
- Purifying quantum-dot light in a coherent frequency interface [39.58317527488534]
Quantum networks operate in the telecom wavelengths to take advantage of low-loss transmission in optical fibres.
Bright quantum dots (QDs) emitting highly indistinguishable quantum states of light, such as InGaAs QDs, often emit photons in the near infrared.
We report a method for simultaneously implementing spectral purification and frequency shifting of single photons from QD sources to the C-band in a periodically poled Lithium Niobate waveguide.
arXiv Detail & Related papers (2024-07-11T18:02:43Z) - Frequency conversion to the telecom O-band using pressurized hydrogen [0.0]
We report on a novel approach of frequency conversion to the telecom band.
This interaction is based on coherent Stokes Raman scattering (CSRS), a four-wave mixing process resonantly enhanced in a dense molecular hydrogen gas.
We show the conversion of photons from SI863nanometer to the telecom O-Band and demonstrate that the input polarization state is preserved.
arXiv Detail & Related papers (2024-01-18T14:18:23Z) - Low noise quantum frequency conversion of photons from a trapped barium
ion to the telecom O-band [0.0]
Trapped ions are one of the leading candidates for scalable and long-distance quantum networks.
One method for creating ion-photon entanglement is to exploit optically transitions from the P_(1/2) to S_(1/2) levels.
We use a two-stage quantum frequency conversion scheme to achieve a frequency shift of 375.4 THz between the input visible photon and the output telecom photon.
arXiv Detail & Related papers (2023-05-02T05:08:10Z) - Low-noise quantum frequency conversion in a monolithic cavity with bulk
periodically poled potassium titanyl phosphate [0.0]
Nitrogen-vacancy centers in diamond are a leading candidate to form the nodes of a quantum network.
We demonstrate a new platform for efficient low-noise quantum frequency conversion based on a monolithic bulk ppKTP cavity.
By resonantly enhancing the power of an off-the-shelf pump laser, we achieve an internal conversion efficiency of $(72.3pm 0.4)%$ while generating only $(110pm 4) mbox kHz/nm$ noise at the target wavelength.
arXiv Detail & Related papers (2023-04-26T11:32:33Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Frequency-bin entanglement from domain-engineered down-conversion [101.18253437732933]
We present a single-pass source of discrete frequency-bin entanglement which does not use filtering or a resonant cavity.
We use a domain-engineered nonlinear crystal to generate an eight-mode frequency-bin entangled source at telecommunication wavelengths.
arXiv Detail & Related papers (2022-01-18T19:00:29Z) - Complete conversion between one and two photons in nonlinear waveguides
with tailored dispersion [62.997667081978825]
We show theoretically how to control coherent conversion between a narrow-band pump photon and broadband photon pairs in nonlinear optical waveguides.
We reveal that complete deterministic conversion as well as pump-photon revival can be achieved at a finite propagation distance.
arXiv Detail & Related papers (2021-10-06T23:49:44Z) - Ion-Photonic Frequency Qubit Correlations for Quantum Networks [0.0]
Efficiently scaling quantum networks to long ranges requires local processing nodes to perform basic computation and communication tasks.
Most ions suitable for quantum computing emit photons in visible to near ultraviolet (UV) frequency ranges poorly suited to long-distance fibre optical based networking.
We demonstrate a frequency encoding ion-photon entanglement protocol in $171$Yb$+$ with correlations equivalent to 92.4(8)% fidelity using a purpose-built UV hyperfine spectrometer.
arXiv Detail & Related papers (2021-04-12T03:55:07Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.