Cascaded multitask U-Net using topological loss for vessel segmentation
and centerline extraction
- URL: http://arxiv.org/abs/2307.11603v2
- Date: Thu, 22 Feb 2024 09:47:18 GMT
- Title: Cascaded multitask U-Net using topological loss for vessel segmentation
and centerline extraction
- Authors: Pierre Roug\'e, Nicolas Passat, Odyss\'ee Merveille
- Abstract summary: We propose to replace the soft-skeleton algorithm by a U-Net which computes the vascular skeleton directly from the segmentation.
We build upon this network a cascaded U-Net trained with the clDice loss to embed topological constraints during the segmentation.
- Score: 2.264332709661011
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vessel segmentation and centerline extraction are two crucial preliminary
tasks for many computer-aided diagnosis tools dealing with vascular diseases.
Recently, deep-learning based methods have been widely applied to these tasks.
However, classic deep-learning approaches struggle to capture the complex
geometry and specific topology of vascular networks, which is of the utmost
importance in most applications. To overcome these limitations, the clDice
loss, a topological loss that focuses on the vessel centerlines, has been
recently proposed. This loss requires computing, with a proposed soft-skeleton
algorithm, the skeletons of both the ground truth and the predicted
segmentation. However, the soft-skeleton algorithm provides suboptimal results
on 3D images, which makes the clDice hardly suitable on 3D images. In this
paper, we propose to replace the soft-skeleton algorithm by a U-Net which
computes the vascular skeleton directly from the segmentation. We show that our
method provides more accurate skeletons than the soft-skeleton algorithm. We
then build upon this network a cascaded U-Net trained with the clDice loss to
embed topological constraints during the segmentation. The resulting model is
able to predict both the vessel segmentation and centerlines with a more
accurate topology.
Related papers
- Improved distinct bone segmentation in upper-body CT through
multi-resolution networks [0.39583175274885335]
In distinct bone segmentation from upper body CTs a large field of view and a computationally taxing 3D architecture are required.
This leads to low-resolution results lacking detail or localisation errors due to missing spatial context.
We propose end-to-end trainable segmentation networks that combine several 3D U-Nets working at different resolutions.
arXiv Detail & Related papers (2023-01-31T14:46:16Z) - DTU-Net: Learning Topological Similarity for Curvilinear Structure
Segmentation [2.9398911304923447]
We present DTU-Net, a dual-decoder and topology-aware deep neural network consisting of two sequential light-weight U-Nets.
The texture net makes a coarse prediction using image texture information.
The topology net learns topological information from the coarse prediction by employing a triplet loss trained to recognize false and missed splits.
arXiv Detail & Related papers (2022-05-23T08:15:26Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
We propose a two-stream graph convolutional network (TSGCNet) to learn multi-view information from different geometric attributes.
We evaluate our proposed TSGCNet on a real-patient dataset of dental models acquired by 3D intraoral scanners.
arXiv Detail & Related papers (2020-12-26T08:02:56Z) - Learning Hybrid Representations for Automatic 3D Vessel Centerline
Extraction [57.74609918453932]
Automatic blood vessel extraction from 3D medical images is crucial for vascular disease diagnoses.
Existing methods may suffer from discontinuities of extracted vessels when segmenting such thin tubular structures from 3D images.
We argue that preserving the continuity of extracted vessels requires to take into account the global geometry.
We propose a hybrid representation learning approach to address this challenge.
arXiv Detail & Related papers (2020-12-14T05:22:49Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Offset Curves Loss for Imbalanced Problem in Medical Segmentation [15.663236378920637]
We develop a new deep learning-based model which takes into account both higher feature level i.e. region inside contour and lower feature level i.e. contour.
Our proposed Offset Curves (OsC) loss consists of three main fitting terms.
We evaluate our proposed OsC loss on both 2D network and 3D network.
arXiv Detail & Related papers (2020-12-04T08:35:21Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
We design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition.
Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths.
arXiv Detail & Related papers (2020-11-26T14:43:04Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
We propose a novel Frustum ultrasound based catheter segmentation method.
The proposed method achieved the state-of-the-art performance with an efficiency of 0.25 second per volume.
arXiv Detail & Related papers (2020-10-19T13:56:22Z) - clDice -- A Novel Topology-Preserving Loss Function for Tubular
Structure Segmentation [57.20783326661043]
We introduce a novel similarity measure termed centerlineDice (short clDice)
We theoretically prove that clDice guarantees topology preservation up to homotopy equivalence for binary 2D and 3D segmentation.
We benchmark the soft-clDice loss on five public datasets, including vessels, roads and neurons (2D and 3D)
arXiv Detail & Related papers (2020-03-16T16:27:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.