Game-Theoretic Robust Reinforcement Learning Handles Temporally-Coupled Perturbations
- URL: http://arxiv.org/abs/2307.12062v3
- Date: Thu, 25 Apr 2024 04:07:20 GMT
- Title: Game-Theoretic Robust Reinforcement Learning Handles Temporally-Coupled Perturbations
- Authors: Yongyuan Liang, Yanchao Sun, Ruijie Zheng, Xiangyu Liu, Benjamin Eysenbach, Tuomas Sandholm, Furong Huang, Stephen McAleer,
- Abstract summary: We introduce temporally-coupled perturbations, presenting a novel challenge for existing robust reinforcement learning methods.
We propose GRAD, a novel game-theoretic approach that treats the temporally-coupled robust RL problem as a partially observable two-player zero-sum game.
- Score: 98.5802673062712
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deploying reinforcement learning (RL) systems requires robustness to uncertainty and model misspecification, yet prior robust RL methods typically only study noise introduced independently across time. However, practical sources of uncertainty are usually coupled across time. We formally introduce temporally-coupled perturbations, presenting a novel challenge for existing robust RL methods. To tackle this challenge, we propose GRAD, a novel game-theoretic approach that treats the temporally-coupled robust RL problem as a partially observable two-player zero-sum game. By finding an approximate equilibrium within this game, GRAD optimizes for general robustness against temporally-coupled perturbations. Experiments on continuous control tasks demonstrate that, compared with prior methods, our approach achieves a higher degree of robustness to various types of attacks on different attack domains, both in settings with temporally-coupled perturbations and decoupled perturbations.
Related papers
- Robust off-policy Reinforcement Learning via Soft Constrained Adversary [0.7583052519127079]
We introduce an f-divergence constrained problem with the prior knowledge distribution.
We derive two typical attacks and their corresponding robust learning frameworks.
Results demonstrate that our proposed methods achieve excellent performance in sample-efficient off-policy RL.
arXiv Detail & Related papers (2024-08-31T11:13:33Z) - Time-Constrained Robust MDPs [28.641743425443]
We introduce a new time-constrained robust MDP (TC-RMDP) formulation that considers multifactorial, correlated, and time-dependent disturbances.
This study revisits the prevailing assumptions in robust RL and opens new avenues for developing more practical and realistic RL applications.
arXiv Detail & Related papers (2024-06-12T16:45:09Z) - Seeing is not Believing: Robust Reinforcement Learning against Spurious
Correlation [57.351098530477124]
We consider one critical type of robustness against spurious correlation, where different portions of the state do not have correlations induced by unobserved confounders.
A model that learns such useless or even harmful correlation could catastrophically fail when the confounder in the test case deviates from the training one.
Existing robust algorithms that assume simple and unstructured uncertainty sets are therefore inadequate to address this challenge.
arXiv Detail & Related papers (2023-07-15T23:53:37Z) - Adversarial Robustness with Semi-Infinite Constrained Learning [177.42714838799924]
Deep learning to inputs perturbations has raised serious questions about its use in safety-critical domains.
We propose a hybrid Langevin Monte Carlo training approach to mitigate this issue.
We show that our approach can mitigate the trade-off between state-of-the-art performance and robust robustness.
arXiv Detail & Related papers (2021-10-29T13:30:42Z) - Policy Smoothing for Provably Robust Reinforcement Learning [109.90239627115336]
We study the provable robustness of reinforcement learning against norm-bounded adversarial perturbations of the inputs.
We generate certificates that guarantee that the total reward obtained by the smoothed policy will not fall below a certain threshold under a norm-bounded adversarial of perturbation the input.
arXiv Detail & Related papers (2021-06-21T21:42:08Z) - Continuous-Time Model-Based Reinforcement Learning [4.427447378048202]
We propose a continuous-time MBRL framework based on a novel actor-critic method.
We implement and test our method on a new ODE-RL suite that explicitly solves continuous-time control systems.
arXiv Detail & Related papers (2021-02-09T11:30:19Z) - Training Generative Adversarial Networks by Solving Ordinary
Differential Equations [54.23691425062034]
We study the continuous-time dynamics induced by GAN training.
From this perspective, we hypothesise that instabilities in training GANs arise from the integration error.
We experimentally verify that well-known ODE solvers (such as Runge-Kutta) can stabilise training.
arXiv Detail & Related papers (2020-10-28T15:23:49Z) - Robust Reinforcement Learning using Adversarial Populations [118.73193330231163]
Reinforcement Learning (RL) is an effective tool for controller design but can struggle with issues of robustness.
We show that using a single adversary does not consistently yield robustness to dynamics variations under standard parametrizations of the adversary.
We propose a population-based augmentation to the Robust RL formulation in which we randomly initialize a population of adversaries and sample from the population uniformly during training.
arXiv Detail & Related papers (2020-08-04T20:57:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.