Explainable Topic-Enhanced Argument Mining from Heterogeneous Sources
- URL: http://arxiv.org/abs/2307.12131v1
- Date: Sat, 22 Jul 2023 17:26:55 GMT
- Title: Explainable Topic-Enhanced Argument Mining from Heterogeneous Sources
- Authors: Jiasheng Si, Yingjie Zhu, Xingyu Shi, Deyu Zhou, Yulan He
- Abstract summary: Given a controversial target such as nuclear energy'', argument mining aims to identify the argumentative text from heterogeneous sources.
Current approaches focus on exploring better ways of integrating the target-associated semantic information with the argumentative text.
We propose a novel explainable topic-enhanced argument mining approach.
- Score: 33.62800469391487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given a controversial target such as ``nuclear energy'', argument mining aims
to identify the argumentative text from heterogeneous sources. Current
approaches focus on exploring better ways of integrating the target-associated
semantic information with the argumentative text. Despite their empirical
successes, two issues remain unsolved: (i) a target is represented by a word or
a phrase, which is insufficient to cover a diverse set of target-related
subtopics; (ii) the sentence-level topic information within an argument, which
we believe is crucial for argument mining, is ignored. To tackle the above
issues, we propose a novel explainable topic-enhanced argument mining approach.
Specifically, with the use of the neural topic model and the language model,
the target information is augmented by explainable topic representations.
Moreover, the sentence-level topic information within the argument is captured
by minimizing the distance between its latent topic distribution and its
semantic representation through mutual learning. Experiments have been
conducted on the benchmark dataset in both the in-target setting and the
cross-target setting. Results demonstrate the superiority of the proposed model
against the state-of-the-art baselines.
Related papers
- Causal Micro-Narratives [62.47217054314046]
We present a novel approach to classify causal micro-narratives from text.
These narratives are sentence-level explanations of the cause(s) and/or effect(s) of a target subject.
arXiv Detail & Related papers (2024-10-07T17:55:10Z) - Topic-Selective Graph Network for Topic-Focused Summarization [0.0]
We propose a topic-arc recognition objective and topic-selective graph network.
First, the topic-arc recognition objective is used to model training, which endows the capability to discriminate topics for the model.
The topic-selective graph network can conduct topic-guided cross-interaction on sentences based on the results of topic-arc recognition.
arXiv Detail & Related papers (2023-02-25T15:56:06Z) - Contextual information integration for stance detection via
cross-attention [59.662413798388485]
Stance detection deals with identifying an author's stance towards a target.
Most existing stance detection models are limited because they do not consider relevant contextual information.
We propose an approach to integrate contextual information as text.
arXiv Detail & Related papers (2022-11-03T15:04:29Z) - Topic-Aware Contrastive Learning for Abstractive Dialogue Summarization [41.75442239197745]
This work proposes two topic-aware contrastive learning objectives, namely coherence detection and sub-summary generation objectives.
Experiments on benchmark datasets demonstrate that the proposed simple method significantly outperforms strong baselines.
arXiv Detail & Related papers (2021-09-10T17:03:25Z) - Exploring Discourse Structures for Argument Impact Classification [48.909640432326654]
This paper empirically shows that the discourse relations between two arguments along the context path are essential factors for identifying the persuasive power of an argument.
We propose DisCOC to inject and fuse the sentence-level structural information with contextualized features derived from large-scale language models.
arXiv Detail & Related papers (2021-06-02T06:49:19Z) - ConvoSumm: Conversation Summarization Benchmark and Improved Abstractive
Summarization with Argument Mining [61.82562838486632]
We crowdsource four new datasets on diverse online conversation forms of news comments, discussion forums, community question answering forums, and email threads.
We benchmark state-of-the-art models on our datasets and analyze characteristics associated with the data.
arXiv Detail & Related papers (2021-06-01T22:17:13Z) - Aspect-Controlled Neural Argument Generation [65.91772010586605]
We train a language model for argument generation that can be controlled on a fine-grained level to generate sentence-level arguments for a given topic, stance, and aspect.
Our evaluation shows that our generation model is able to generate high-quality, aspect-specific arguments.
These arguments can be used to improve the performance of stance detection models via data augmentation and to generate counter-arguments.
arXiv Detail & Related papers (2020-04-30T20:17:22Z) - AMPERSAND: Argument Mining for PERSuAsive oNline Discussions [41.06165177604387]
We propose a computational model for argument mining in online persuasive discussion forums.
Our approach relies on identifying relations between components of arguments in a discussion thread.
Our models obtain significant improvements compared to recent state-of-the-art approaches.
arXiv Detail & Related papers (2020-04-30T10:33:40Z) - The Role of Pragmatic and Discourse Context in Determining Argument
Impact [39.70446357000737]
This paper presents a new dataset to initiate the study of this aspect of argumentation.
It consists of a diverse collection of arguments covering 741 controversial topics and comprising over 47,000 claims.
We propose predictive models that incorporate the pragmatic and discourse context of argumentative claims and show that they outperform models that rely on claim-specific linguistic features for predicting the perceived impact of individual claims within a particular line of argument.
arXiv Detail & Related papers (2020-04-06T23:00:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.