Maximal Information Leakage from Quantum Encoding of Classical Data
- URL: http://arxiv.org/abs/2307.12529v2
- Date: Tue, 2 Jan 2024 03:28:50 GMT
- Title: Maximal Information Leakage from Quantum Encoding of Classical Data
- Authors: Farhad Farokhi
- Abstract summary: An adversary can access a single copy of the state of a quantum system that encodes some classical data.
The resulting measure of information leakage is the multiplicative increase of the probability of correctly guessing any function of the classical data.
- Score: 9.244521717083696
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A new measure of information leakage for quantum encoding of classical data
is defined. An adversary can access a single copy of the state of a quantum
system that encodes some classical data and is interested in correctly guessing
a general randomized or deterministic function of the data (e.g., a specific
feature or attribute of the data in quantum machine learning) that is unknown
to the security analyst. The resulting measure of information leakage, referred
to as maximal quantum leakage, is the multiplicative increase of the
probability of correctly guessing any function of the classical data upon
observing measurements of the quantum state. Maximal quantum leakage is shown
to satisfy post-processing inequality (i.e., applying a quantum channel reduces
information leakage) and independence property (i.e., leakage is zero if the
quantum state is independent of the classical data), which are fundamental
properties required for privacy and security analysis. It also bounds
accessible information. Effects of global and local depolarizing noise models
on the maximal quantum leakage are established.
Related papers
- The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Quantum information scrambling in adiabatically-driven critical systems [49.1574468325115]
Quantum information scrambling refers to the spread of the initially stored information over many degrees of freedom of a quantum many-body system.
We extend the notion of quantum information scrambling to critical quantum many-body systems undergoing an adiabatic evolution.
arXiv Detail & Related papers (2024-08-05T18:00:05Z) - Measuring Quantum Information Leakage Under Detection Threat [7.82527155589504]
Gentle quantum leakage is proposed as a measure of information leakage to arbitrary eavesdroppers.
Measures are used to encode the desire of the eavesdropper to evade detection.
Global depolarizing noise is shown to reduce gentle quantum leakage.
arXiv Detail & Related papers (2024-03-18T03:07:09Z) - Barycentric and Pairwise Renyi Quantum Leakage [9.244521717083696]
Barycentric and pairwise quantum Renyi leakages are proposed as measures of information leakage for privacy and security analysis.
They satisfy important properties of positivity, independence, post-processing inequality, and unitary invariance.
Global and local depolarizing channels, that are common models of noise in quantum computing and communication, restrict private or secure information leakage.
arXiv Detail & Related papers (2024-02-09T03:09:33Z) - Efficient algorithms for quantum information bottleneck [64.67104066707309]
We propose a new and general algorithm for the quantum generalisation of information bottleneck.
Our algorithm excels in the speed and the definiteness of convergence compared with prior results.
Notably, we discover that a quantum system can achieve strictly better performance than a classical system of the same size regarding quantum information bottleneck.
arXiv Detail & Related papers (2022-08-22T14:20:05Z) - Algorithm and Circuit of Nesting Doubled Qubits [3.6296396308298795]
Copying quantum states is contradictory to classical information processing.
This paper investigates the naturally arising question of how well or under what conditions one can copy and measure an arbitrary quantum superposition of states.
arXiv Detail & Related papers (2022-01-01T23:14:44Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
We consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel.
We show that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries.
We provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties.
arXiv Detail & Related papers (2020-10-15T17:55:31Z) - A rigorous and robust quantum speed-up in supervised machine learning [6.402634424631123]
In this paper, we establish a rigorous quantum speed-up for supervised classification using a general-purpose quantum learning algorithm.
Our quantum classifier is a conventional support vector machine that uses a fault-tolerant quantum computer to estimate a kernel function.
arXiv Detail & Related papers (2020-10-05T17:22:22Z) - Quantum noise protects quantum classifiers against adversaries [120.08771960032033]
Noise in quantum information processing is often viewed as a disruptive and difficult-to-avoid feature, especially in near-term quantum technologies.
We show that by taking advantage of depolarisation noise in quantum circuits for classification, a robustness bound against adversaries can be derived.
This is the first quantum protocol that can be used against the most general adversaries.
arXiv Detail & Related papers (2020-03-20T17:56:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.