Fake News Detection Through Graph-based Neural Networks: A Survey
- URL: http://arxiv.org/abs/2307.12639v1
- Date: Mon, 24 Jul 2023 09:30:30 GMT
- Title: Fake News Detection Through Graph-based Neural Networks: A Survey
- Authors: Shuzhi Gong, Richard O. Sinnott, Jianzhong Qi, Cecile Paris
- Abstract summary: Low-quality and/or deliberately fake information can spread rapidly online.
Identifying and debunking online misinformation as early as possible has become an increasingly urgent problem.
We present a systematic review of fake news detection studies based on graph-based and deep learning-based techniques.
- Score: 18.70577400440486
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The popularity of online social networks has enabled rapid dissemination of
information. People now can share and consume information much more rapidly
than ever before. However, low-quality and/or accidentally/deliberately fake
information can also spread rapidly. This can lead to considerable and negative
impacts on society. Identifying, labelling and debunking online misinformation
as early as possible has become an increasingly urgent problem. Many methods
have been proposed to detect fake news including many deep learning and
graph-based approaches. In recent years, graph-based methods have yielded
strong results, as they can closely model the social context and propagation
process of online news. In this paper, we present a systematic review of fake
news detection studies based on graph-based and deep learning-based techniques.
We classify existing graph-based methods into knowledge-driven methods,
propagation-based methods, and heterogeneous social context-based methods,
depending on how a graph structure is constructed to model news related
information flows. We further discuss the challenges and open problems in
graph-based fake news detection and identify future research directions.
Related papers
- Epidemiology-informed Network for Robust Rumor Detection [59.89351792706995]
We propose a novel Epidemiology-informed Network (EIN) that integrates epidemiological knowledge to enhance performance.
To adapt epidemiology theory to rumor detection, it is expected that each users stance toward the source information will be annotated.
Our experimental results demonstrate that the proposed EIN not only outperforms state-of-the-art methods on real-world datasets but also exhibits enhanced robustness across varying tree depths.
arXiv Detail & Related papers (2024-11-20T00:43:32Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Semantic Enhanced Knowledge Graph for Large-Scale Zero-Shot Learning [74.6485604326913]
We provide a new semantic enhanced knowledge graph that contains both expert knowledge and categories semantic correlation.
To propagate information on the knowledge graph, we propose a novel Residual Graph Convolutional Network (ResGCN)
Experiments conducted on the widely used large-scale ImageNet-21K dataset and AWA2 dataset show the effectiveness of our method.
arXiv Detail & Related papers (2022-12-26T13:18:36Z) - Nothing Stands Alone: Relational Fake News Detection with Hypergraph
Neural Networks [49.29141811578359]
We propose to leverage a hypergraph to represent group-wise interaction among news, while focusing on important news relations with its dual-level attention mechanism.
Our approach yields remarkable performance and maintains the high performance even with a small subset of labeled news data.
arXiv Detail & Related papers (2022-12-24T00:19:32Z) - Exploring Fake News Detection with Heterogeneous Social Media Context
Graphs [4.2177790395417745]
Fake news detection has become a research area that goes way beyond a purely academic interest as it has direct implications on our society as a whole.
We propose to construct heterogeneous social context graphs around news articles and reformulate the problem as a graph classification task.
arXiv Detail & Related papers (2022-12-13T13:29:47Z) - Modelling Social Context for Fake News Detection: A Graph Neural Network
Based Approach [0.39146761527401425]
Detection of fake news is crucial to ensure the authenticity of information and maintain the news ecosystems reliability.
This paper has analyzed the social context of fake news detection with a hybrid graph neural network based approach.
arXiv Detail & Related papers (2022-07-27T12:58:33Z) - A comparative analysis of Graph Neural Networks and commonly used
machine learning algorithms on fake news detection [0.0]
Low cost, simple accessibility via social platforms, and a plethora of low-budget online news sources are some of the factors that contribute to the spread of false news.
Most of the existing fake news detection algorithms are solely focused on the news content only.
engaged users prior posts or social activities provide a wealth of information about their views on news and have significant ability to improve fake news identification.
arXiv Detail & Related papers (2022-03-26T18:40:03Z) - Hetero-SCAN: Towards Social Context Aware Fake News Detection via
Heterogeneous Graph Neural Network [11.145085584637744]
We propose a novel social context aware fake news detection method, Hetero-SCAN, based on a heterogeneous graph neural network.
We demonstrate that Hetero-SCAN yields significant improvement over state-of-the-art text-based and graph-based fake news detection methods in terms of performance and efficiency.
arXiv Detail & Related papers (2021-09-13T15:21:44Z) - SOK: Fake News Outbreak 2021: Can We Stop the Viral Spread? [5.64512235559998]
Social Networks' omnipresence and ease of use has revolutionized the generation and distribution of information in today's world.
Unlike traditional media channels, social networks facilitate faster and wider spread of disinformation and misinformation.
Viral spread of false information has serious implications on the behaviors, attitudes and beliefs of the public.
arXiv Detail & Related papers (2021-05-22T09:26:13Z) - Leveraging Multi-Source Weak Social Supervision for Early Detection of
Fake News [67.53424807783414]
Social media has greatly enabled people to participate in online activities at an unprecedented rate.
This unrestricted access also exacerbates the spread of misinformation and fake news online which might cause confusion and chaos unless being detected early for its mitigation.
We jointly leverage the limited amount of clean data along with weak signals from social engagements to train deep neural networks in a meta-learning framework to estimate the quality of different weak instances.
Experiments on realworld datasets demonstrate that the proposed framework outperforms state-of-the-art baselines for early detection of fake news without using any user engagements at prediction time.
arXiv Detail & Related papers (2020-04-03T18:26:33Z) - Mining Disinformation and Fake News: Concepts, Methods, and Recent
Advancements [55.33496599723126]
disinformation including fake news has become a global phenomenon due to its explosive growth.
Despite the recent progress in detecting disinformation and fake news, it is still non-trivial due to its complexity, diversity, multi-modality, and costs of fact-checking or annotation.
arXiv Detail & Related papers (2020-01-02T21:01:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.