Gaussian Cooling and Dikin Walks: The Interior-Point Method for Logconcave Sampling
- URL: http://arxiv.org/abs/2307.12943v4
- Date: Thu, 21 Mar 2024 20:59:59 GMT
- Title: Gaussian Cooling and Dikin Walks: The Interior-Point Method for Logconcave Sampling
- Authors: Yunbum Kook, Santosh S. Vempala,
- Abstract summary: In the 1990s Nester and Nemirovski developed the Interior-Point Method (IPM) for convex optimization based on self-concordant barriers.
In 2012, Kannan and Narayanan proposed the Dikin walk for uniformly sampling polytopes.
Here we generalize this approach by developing and adapting IPM machinery together with the Dikin walk for poly-time sampling algorithms.
- Score: 8.655526882770742
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The connections between (convex) optimization and (logconcave) sampling have been considerably enriched in the past decade with many conceptual and mathematical analogies. For instance, the Langevin algorithm can be viewed as a sampling analogue of gradient descent and has condition-number-dependent guarantees on its performance. In the early 1990s, Nesterov and Nemirovski developed the Interior-Point Method (IPM) for convex optimization based on self-concordant barriers, providing efficient algorithms for structured convex optimization, often faster than the general method. This raises the following question: can we develop an analogous IPM for structured sampling problems? In 2012, Kannan and Narayanan proposed the Dikin walk for uniformly sampling polytopes, and an improved analysis was given in 2020 by Laddha-Lee-Vempala. The Dikin walk uses a local metric defined by a self-concordant barrier for linear constraints. Here we generalize this approach by developing and adapting IPM machinery together with the Dikin walk for poly-time sampling algorithms. Our IPM-based sampling framework provides an efficient warm start and goes beyond uniform distributions and linear constraints. We illustrate the approach on important special cases, in particular giving the fastest algorithms to sample uniform, exponential, or Gaussian distributions on a truncated PSD cone. The framework is general and can be applied to other sampling algorithms.
Related papers
- Harmonic Path Integral Diffusion [0.4527270266697462]
We present a novel approach for sampling from a continuous multivariate probability distribution, which may either be explicitly known (up to a normalization factor) or represented via empirical samples.
Our method constructs a time-dependent bridge from a delta function centered at the origin of the state space at $t=0$, transforming it into the target distribution at $t=1$.
We contrast these algorithms with other sampling methods, particularly simulated and path integral sampling, highlighting their advantages in terms of analytical control, accuracy, and computational efficiency.
arXiv Detail & Related papers (2024-09-23T16:20:21Z) - Faster Sampling via Stochastic Gradient Proximal Sampler [28.422547264326468]
Proximal samplers (SPS) for sampling from non-log-concave distributions are studied.
We show that the convergence to the target distribution can be guaranteed as long as the algorithm trajectory is bounded.
We provide two implementable variants based on Langevin dynamics (SGLD) and Langevin-MALA, giving rise to SPS-SGLD and SPS-MALA.
arXiv Detail & Related papers (2024-05-27T00:53:18Z) - Differentially Private Optimization with Sparse Gradients [60.853074897282625]
We study differentially private (DP) optimization problems under sparsity of individual gradients.
Building on this, we obtain pure- and approximate-DP algorithms with almost optimal rates for convex optimization with sparse gradients.
arXiv Detail & Related papers (2024-04-16T20:01:10Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Plug-and-Play split Gibbs sampler: embedding deep generative priors in
Bayesian inference [12.91637880428221]
This paper introduces a plug-and-play sampling algorithm that leverages variable splitting to efficiently sample from a posterior distribution.
It divides the challenging task of posterior sampling into two simpler sampling problems.
Its performance is compared to recent state-of-the-art optimization and sampling methods.
arXiv Detail & Related papers (2023-04-21T17:17:51Z) - Resolving the Mixing Time of the Langevin Algorithm to its Stationary
Distribution for Log-Concave Sampling [34.66940399825547]
This paper characterizes the mixing time of the Langevin Algorithm to its stationary distribution.
We introduce a technique from the differential privacy literature to the sampling literature.
arXiv Detail & Related papers (2022-10-16T05:11:16Z) - A Proximal Algorithm for Sampling from Non-smooth Potentials [10.980294435643398]
We propose a novel MCMC algorithm for sampling from non-smooth potentials.
Our method is based on the proximal bundle method and an alternating sampling framework.
One key contribution of this work is a fast algorithm that realizes the restricted Gaussian oracle for any convex non-smooth potential.
arXiv Detail & Related papers (2021-10-09T15:26:07Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - Pathwise Conditioning of Gaussian Processes [72.61885354624604]
Conventional approaches for simulating Gaussian process posteriors view samples as draws from marginal distributions of process values at finite sets of input locations.
This distribution-centric characterization leads to generative strategies that scale cubically in the size of the desired random vector.
We show how this pathwise interpretation of conditioning gives rise to a general family of approximations that lend themselves to efficiently sampling Gaussian process posteriors.
arXiv Detail & Related papers (2020-11-08T17:09:37Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.